Thus, the tight-binding inhibition is essentially irreversible.
Indeed, the enzyme activities could not be recovered after
removal of the free inhibitors by centrifugal ultrafiltration.
The overall inhibitory constant Ki* was determined to be 18 pM.
These inhibitory constants are close to the values Ki = 0.67 nM
and Ki* = 36 pM determined from the steady state rate law
established under conditions when EI* was preformed
(ESI, Fig. S4; details about the determination of the foregoing
kapp, k3, k4, Ki, Ki* values are described in ESIw). Complex 1 is
thus among the most potent TrxR inhibitors reported.5b,14a
The reduced TrxR has free –SH (Cys497) and –SeH
(Sec498) groups at the C-terminal active site, making them
vulnerable to attack by Au(I).5a,b,14a It has been shown that
biotinylated iodoacetamide (BIAM) alkylates both the –SH
and –SeH at pH 8.5, but at pH 6.5 alkylates only the –SeH; the
resulting adduct can be detected by western blot experiment
using streptavidin-linked horseradish peroxidase.14d,16
When NADPH-reduced TrxR (0.1 mM) was preincubated
with 1 (4 mM), the BIAM labelling at pH 8.5 and 6.5 (buffered
with 0.1 M Tris-HCl) was inhibited (Fig. 3), suggesting that
the Sec or additionally the Cys residue at the active site was
involved in the enzyme inactivation. Compared with NADPH-
reduced TrxR, the oxidized TrxR having the –S–Se– group,
instead of free –SH and –SeH groups, was much less efficiently
inhibited by 1 (ESI, Fig. S5w). Moreover, size exclusion
chromatography and ICP-MS analysis (SEC-ICP-MS) of the
trypsin digest of TrxR treated with 1 showed the appearance
of a peptide fraction co-eluted with Se and Au (ESI, Fig. S6w).
The formation of the tight enzyme–inhibitor complex (EI*) is
likely to involve modification of the redox active Sec/Cys
residue via coordination with Au(I). This may be congruent
with the report of Berners-Price and co-workers on the two-
step ligand exchange reactions of [AuI(NHC)2]+ with cysteine
and selenocysteine.6
4884–4892; (f) I. Ott, Coord. Chem. Rev., 2009, 253, 1670–1681;
(g) R. W.-Y. Sun and C.-M. Che, Coord. Chem. Rev., 2009, 253,
1682–1691; (h) F.-M. Siu and C.-M. Che, Curr. Opin. Chem. Biol.,
2009, 14, 255–261.
2 For reviews, see: (a) M. J. McKeage, L. Maharaj and S. J. Berners-
Price, Coord. Chem. Rev., 2002, 232, 127–135; (b) S. J. Berners-
Price and A. Filipovska, Aust. J. Chem., 2008, 61, 661–668.
3 For reviews, see: (a) J. C. Y. Lin, R. T. W. Huang, C. S. Lee,
A. Bhattacharyya, W. S. Hwang and I. J. B. Lin, Chem. Rev., 2009,
109, 3561–3598; (b) K. M. Hindi, M. J. Panzner, C. A. Tessier,
C. L. Cannon and W. J. Youngs, Chem. Rev., 2009, 109,
3859–3884.
4 For reviews, see: (a) P. J. Barnard and S. J. Berners-Price,
Coord. Chem. Rev., 2007, 251, 1889–1902; (b) A. Bindoli,
M. P. Rigobello, G. Scutari, C. Gabbiani, A. Casini and
L. Messori, Coord. Chem. Rev., 2009, 253, 1692–1707.
5 For reviews, see: (a) E. S. Arner and A. Holmgren, Semin. Cancer
Biol., 2006, 16, 420–426; (b) S. Urig and K. Becker, Semin. Cancer
Biol., 2006, 16, 452–465; (c) E. S. Arner, Biochim. Biophys. Acta,
Gen. Subj., 2009, 1790, 495–526; (d) M. Selenius, A.-K. Rundlof,
¨
E. Olm, A. P. Fernandes and M. Bjornstedt, Antioxid. Redox
¨
Signaling, 2010, 12, 867–880.
6 J. L. Hickey, R. A. Ruhayel, P. J. Barnard, M. V. Baker,
S. J. Berners-Price and A. Filipovska, J. Am. Chem. Soc., 2008,
130, 12570–12571.
7 For reviews, see: (a) P. D. Akrivos, Coord. Chem. Rev., 2001, 213,
181–210; (b) K. R. Koch, Coord. Chem. Rev., 2001, 216–217,
473–488; (c) E. R. T. Tiekink, Crit. Rev. Oncol. Hematol., 2002,
42, 225–245; (d) E. R. T. Tiekink, Inflammopharmacology, 2008,
16, 138–142; (e) T. S. Lobana, R. Sharma, G. Bawa and
S. Khanna, Coord. Chem. Rev., 2009, 253, 977–1055.
8 (a) D. Saggioro, M. P. Riobello, L. Paloschi, A. Folda,
S. A. Moggach, S. Parsons, L. Ronconi, D. Fregona and
A. Bindoli, Chem. Biol., 2007, 14, 1128–1139; (b) L. Ronconi,
D. Aldinucci, Q. P. Dou and D. Fregona, Anticancer Agents Med.
Chem., 2010, 10, 283–292, and references therein.
9 (a) W. Henderson, B. K. Nicholson and E. R. T. Tiekink, Inorg.
Chim. Acta, 2006, 359, 204–214; (b) J. S. Casas, E. E. Castellano,
M. D. Couce, J. Ellena, A. Sanchez, J. Sordo and C. Taboada,
´
J. Inorg. Biochem., 2006, 100, 1858–1860; (c) N. O. Al-Zamil,
K. A. Al-Sadhan, A. A. Isab, M. I. M. Wazeer and A. R. A.
Al-Arfaj, Spectroscopy, 2007, 21, 61–67; (d) M. K. Rauf,
Imtiaz-ud-Din, A. Badshah, M. Gielen, M. Ebihara, D. de Vos
and S. Ahmed, J. Inorg. Biochem., 2009, 103, 1135–1144;
(e) V. Gandin, A. P. Fernandes, M. P. Rigobello, B. Dani,
In summary, homoleptic d10 metal thiourea complexes
represent a new paradigm in developing metal-based inhibitors
of enzymes such as TrxR. In particular, we have demonstrated
that the Au(I)–thiourea complex 1 confers specific tight-binding
inhibition of TrxR with a potency among the highest
reported5b and exhibits effective suppression of the cellular
reductase activity. By variation of the thiourea ligand, metal
thiourea complexes have the prospect to be a new class of
metal-based drugs leads.
F. Sorrentino, F. Tisato, M. Bjornstedt, A. Bindoli, A. Sturaro,
¨
R. Rella and C. Marzano, Biochem. Pharmacol., 2010, 79, 90–101.
10 D. Yang, Y.-C. Chen and N.-Y. Zhu, Org. Lett., 2004, 6,
1577–1580.
11 (a) P. G. Jones and S. Friedrichs, Acta Crystallogr., Sect. C: Cryst.
´
Struct. Commun., 2006, 62, m623–m627; (b) J. Sola, A. Lopez,
R. A. Coxall and W. Clegg, Eur. J. Inorg. Chem., 2004, 4871–4881.
12 R. M. Snyder, C. K. Mirabelli and S. T. Crooke, Semin. Arthritis
Rheum., 1987, 17, 71–80.
13 (a) M. T. Razi, G. Otiko and P. J. Sadler, ACS Symp. Ser., 1983,
209, 371–384; (b) S. S. Gunatilleke and A. M. Barrios, J. Med.
Chem., 2006, 49, 3933–3937; (c) D. Krishnamurthy, M. R. Karver,
E. Fiorillo, V. Orru, S. M. Stanford, N. Bottini and A. M. Barrios,
J. Med. Chem., 2008, 51, 4790–4795.
14 (a) S. Gromer, L. D. Arscott, C. H. Williams, Jr., R. H. Schirmer
and K. Becker, J. Biol. Chem., 1998, 273, 20096–20101;
(b) M. P. Rigobello, G. Scutari, A. Folda and A. Bindoli, Biochem.
Pharmacol., 2004, 67, 689–696; (c) S. Urig, K. Fritz-Wolf, R. Reau,
C. Herold-Mende, K. Toth, E. Davioud-Chavet and K. Becker,
Angew. Chem., Int. Ed., 2006, 45, 1881–1886; (d) E. Vergara,
A. Casini, F. Sorrentino, O. Zava, E. Cerrada, M. P. Rigobello,
A. Bindoli, M. Laguna and P. J. Dyson, ChemMedChem, 2010, 5,
96–102.
This work was supported by the Area of Excellence Scheme
(AoE/P-10/01) established under the University Grants
Committee of the Hong Kong SAR, P.R. China. Support of
the PROCORE project (French Ministry of Foreign Affairs,
Project No. 20637NA) to K.B. and Ryszard Lobinski is
acknowledged. We thank Z.-Y. Zhou, N.-Y. Zhu and S.-Y.
Chui for crystallography analysis. We also thank J.-S. Huang,
Ricky Ho and Raymond Sun for constructive comments.
Notes and references
1 For reviews, see: (a) S. J. Berners-Price and P. J. Sadler, Coord.
Chem. Rev., 1996, 151, 1–40; (b) C. F. Shaw, Chem. Rev., 1999, 99,
2589–2600; (c) C. X. Zhang and S. J. Lippard, Curr. Opin. Chem.
Biol., 2003, 7, 481–489; (d) M. Gielen and E. R. T. Tiekink,
Metallotherapeutic drugs and metal-based diagnostic agents, John
Wiley, Chichester, England; Hoboken, NJ, 2005; (e) R. W.-Y. Sun,
D.-L. Ma, E. L.-M. Wong and C.-M. Che, Dalton Trans., 2007,
15 (a) J. F. Morrison and C. T. Walsh, Adv. Enzymol. Relat. Areas
Mol. Biol., 1988, 61, 201–301; (b) M. J. Sculley, J. F. Morrison and
W. W. Cleland, Biochim. Biophys. Acta, Protein Struct. Mol.
Enzymol., 1996, 1298, 78–86.
16 (a) J. R. Kim, H. W. Yoon, K. S. Kwon, S. R. Lee and S. G. Rhee,
Anal. Biochem., 2000, 283, 214–221; (b) J. Fang and A. Holmgren,
J. Am. Chem. Soc., 2006, 128, 1879–1885.
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 7691–7693 | 7693