P. Villo, L. Toom, E. Eriste, L. Vares
FULL PAPER
G. Lewin, E. Peris, N. Chahboune, A. Garofano, S. Dröse, D.
Cortes, U. Brandt, R. Hocquemiller, Biochemistry 2006, 45,
2721–2728; c) R. A. Duval, E. Poupon, V. Romero, E. Peris, G.
Lewin, D. Cortes, U. Brandt, R. Hocquemiller, Tetrahedron
2006, 62, 6248–6257; d) S. Arndt, U. Emde, S. Bäurle, T. Fried-
rich, L. Grubert, U. Koert, Chem. Eur. J. 2001, 7, 993–1005; e)
S. Hoppen, U. Emde, T. Friedrich, L. Grubert, U. Koert, An-
gew. Chem. 2000, 112, 2181–2184; Angew. Chem. Int. Ed. 2000,
39, 2099–2101.
Y. Chen, J.-W. Chen, S.-S. Xu, Y. Wang, X. Li, B.-C. Cai, N.-
B. Fan, Bioorg. Med. Chem. Lett. 2012, 22, 2717–2719.
A. Guadaño, C. Gutiérrez, E. de la Peña, D. Cortes, A.
González-Coloma, J. Nat. Prod. 2000, 63, 773–776.
For further reading on acetogenin mimics containing polyether
units, see: a) Z.-J. Yao, H.-P. Wu, Y.-L. Wu, J. Med. Chem.
2000, 43, 2484–2487; b) B.-B. Zeng, Y. Wu, Q. Yu, Y.-L. Wu,
Y. Li, X.-G. Chen, Angew. Chem. 2000, 112, 2010–2013; Angew.
Chem. Int. Ed. 2000, 39, 1934–1937; c) S. Jiang, Y. Li, X.-G.
Chen, T.-S. Hu, Y.-L. Wu, Z.-J. Yao, Angew. Chem. 2004, 116,
333–338; Angew. Chem. Int. Ed. 2004, 43, 329–334; d) H.-X.
Liu, G.-R. Huang, H.-M. Zhang, S. Jiang, J.-R. Wu, Z.-J. Yao,
ChemBiolChem. 2007, 8, 172–177; e) Q. Xiao, Y. Liu, Y. Qiu,
G. Zhou, C. Mao, Z. Li, Z.-J. Yao, S. Jiang, J. Med. Chem.
2011, 54, 525–533.
stirred overnight at room temp. Solid NaHCO3 was added, the mix-
ture was filtered through Celite, and the filtrate was concentrated
in vacuo. The residue was purified by flash chromatography (2%
MeOH in CH2Cl2) to give 6 (12 mg, 77%) as a white solid. 1H
NMR (400.1 MHz, CDCl3): δ = 7.17 (m, 1 H), 5.05 (m, 1 H), 3.84
(m, 1 H), 3.70–3.60 (m, 2 H), 2.79–2.73 (m, 10 H), 2.53–2.45 (m,
2 H), 2.27 (br. s, 3 H), 1.54–1.20 (m, 43 H), 0.87 (vt, 3 H) ppm.
13C NMR (100.6 MHz, CDCl3): δ = 174.5, 151.7, 131.2, 77.9, 69.9,
69.83, 69.82, 40.3, 37.4, 36.3, 36.2, 33.3, 32.5, 32.4, 31.8, 29.6,
29.59, 29.58, 29.55, 29.49, 29.48, 29.46, 29.3, 25.7, 25.6, 25.5, 22.6,
[10]
[11]
[12]
19.1, 14.0 ppm. IR: ν = 3425, 2916, 2846, 1739, 1465, 1423, 1319,
˜
1195, 1083, 1029, 736, 721 cm–1. HRMS: calcd. for C35H66O5S3 [M
+ H]+ 663.4145; found 663.4141.
Supporting Information (see footnote on the first page of this arti-
cle): Determination of enantiomeric ratio for (S)-9, determination
of enantiomeric and diastereomeric ratios for epoxy-diol 13, 1H
and 13C NMR spectra for compounds 1–8, 11 and 22–35, HRMS
spectra for aza and thio analogues 1–6.
Acknowledgments
[13]
[14]
H. Konno, N. Hiura, H. Makabe, M. Abe, H. Miyoshi, Bioorg.
Med. Chem. Lett. 2004, 14, 629–632.
The authors thank the Estonian Ministry of Education (project
No. SF0180073s08 and SF0180027s08), the Archimedes Founda-
tion (project No. 3.2.0501.10-0004), and the European Regional
Development Fund through the Center of Excellence in Chemical
Biology, Estonia for financial support. We are also grateful to Dr.
Tõnis Pehk (National Institute of Chemical Physics and Biophysics,
Tallinn, Estonia) for his help with NMR spectra, and Prof. Peter
Somfai (Lund University, Sweden) for critically reading the manu-
script.
a) Q. Xiao, Y. Liu, Y. Qiu, Z. Yao, G. Zhou, Z.-J. Yao, S. Jiang,
Bioorg. Med. Chem. Lett. 2011, 21, 3613–3615; b) M. Wang,
J.-K. Shen, Chin. J. Synth. Chem. 2006, 14, 337–341.
S. Jiang, Z.-H. Liu, G. Sheng, B.-B. Zeng, X.-G. Cheng, Y.-L.
Wu, Z.-J. Yao, J. Org. Chem. 2002, 67, 3404–3408.
H.-X. Liu, F. Shao, G.-Q. Li, G.-L. Xun, Z.-J. Yao, Chem. Eur.
J. 2008, 14, 8632–8639.
a) C. Jacob, Nat. Prod. Rep. 2006, 23, 851–863; b) T. A. M.
Gulder, B. S. Moore, Curr. Opin. Microbiol. 2009, 12, 252–260.
D. L. Howard, H. G. Kjaergaard, Phys. Chem. Chem. Phys.
2008, 10, 4113–4118.
a) S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga,
K. B. Hansen, A. E. Gould, M. E. Furrow, E. N. Jacobsen, J.
Am. Chem. Soc. 2002, 124, 1307–1315; b) L. P. C. Nielsen, C. P.
Stevenson, D. G. Blackmond, E. N. Jacobsen, J. Am. Chem.
Soc. 2004, 126, 1360–1362; c) P. Kumar, V. Naidu, P. Gupta,
Tetrahedron 2007, 63, 2745–2785.
[15]
[16]
[17]
[18]
[19]
[1] For recent reviews of isolated and synthesized acetogenins, see:
a) C.-C. Liaw, T.-Y. Wu, F.-R. Chang, Y.-C. Wu, Planta Med.
2010, 76, 1390–1404; b) A. Bermejo, B. Figadère, M.-C. Zafra-
Polo, I. Barrachina, E. Estornell, D. Cortes, Nat. Prod. Rep.
2005, 22, 269–303; c) F. Q. Alali, X.-X. Liu, J. L. McLaughlin,
J. Nat. Prod. 1999, 62, 504–540.
[2] D. J. Morré, R. de Cabo, C. Farley, N. H. Oberlies, J. L.
McLaughlin, Life Sci. 1994, 56, 343–348.
[3] a) P. S. Soltis, D. E. Soltis, Am. J. Bot. 2004, 91, 1614–1626; b)
R. F. Thorne, Bot. Rev. 2000, 66, 441–647.
[4] J. L. McLaughlin, J. Nat. Prod. 2008, 71, 1311–1321.
[5] S. D. Jolad, J. J. Hoffmann, K. H. Schram, J. R. Cole, J. Org.
Chem. 1982, 47, 3151–3153.
[20]
[21]
H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev.
1994, 94, 2483–2547.
a) H. Lebel, E. N. Jacobsen, Tetrahedron Lett. 1999, 40, 7303–
7306; b) G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, P.
Melchiorre, L. Sambri, Org. Lett. 2005, 7, 1983–1985.
a) S. Chow, W. Kitching, Tetrahedron: Asymmetry 2002, 13,
779–793; b) S. Chow, W. A. Koening, W. Kitching, Eur. J. Org.
Chem. 2004, 1198–1201; c) X. Li, C. E. Burrell, R. J. Staples,
B. Borhan, J. Am. Chem. Soc. 2012, 134, 9026–9029.
J. Bredihhina, P. Villo, K. Andersons, L. Toom, L. Vares, J.
Org. Chem. 2013, 78, 2379–2385.
a) P. Duret, B. Figadère, R. Hocquemiller, A. Cavé, Tetrahe-
dron Lett. 1997, 38, 8849–8852; b) J. A. Marshall, H. Jiang, J.
Org. Chem. 1999, 64, 971–975.
The ratio of enantiomers was determined by chiral GC analysis
using a permethylated β-cyclodextrin column (30 mϫ0.25 mm
IDϫ0.25 μm film thickness, Chrompack).
L. Toom, P. Villo, I. Liblikas, L. Vares, Synth. Commun. 2008,
38, 4295–4313.
For the determination of er, see Exp. Sect. for (S)-9 and Sup-
porting Information.
For the determination of er and dr, see Exp. Sect. for 13 and
Supporting Information. For the characterization of the thiol
derivative, see ref.[23]
M. J. Martinelli, N. K. Nayyar, E. D. Moher, U. P. Dhokte,
J. M. Pawlak, R. Vaidyanathan, Org. Lett. 1999, 1, 447–450.
[6] a) T. Motoyama, H. Yabunaka, H. Miyoshi, Bioorg. Med.
Chem. Lett. 2002, 12, 2089–2092; b) T. Hamada, N. Ichimaru,
M. Abe, D. Fujita, A. Kenmochi, T. Nishioka, K. Zwicker, U.
Brandt, H. Miyoshi, Biochemistry 2004, 43, 3651–3658; c) M.
Abe, A. Kenmochi, N. Ichimaru, T. Hamada, T. Nishioka, H.
Miyoshi, Bioorg. Med. Chem. Lett. 2004, 14, 779–782; d) K.
Kuwabara, M. Takada, J. Iwata, K. Tatsumoto, K. Sakamoto,
H. Iwamura, H. Miyoshi, Eur. J. Biochem. 2000, 267, 2538–
2546; e) H. Shimada, J. B. Grutzner, J. F. Kozlowski, J. L.
McLaughlin, Biochemistry 1998, 37, 854–866.
[7] a) N. Kojima, T. Morioka, D. Urabe, M. Yano, Y. Suga, N.
Maezaki, A. Ohashi-Kobayashi, Y. Fujimoto, M. Maeda, T.
Yamori, T. Yoshimitsu, T. Tanaka, Bioorg. Med. Chem. 2010,
18, 8630–8641; b) N. Kojima, T. Tanaka, Molecules 2009, 14,
3621–3661; c) V. Coothankandaswamy, Y. Liu, S.-C. Mao, J. B.
Morgan, F. Mahdi, M. B. Jekabsons, D. G. Nagle, Y.-D. Zhou,
J. Nat. Prod. 2010, 73, 956–961.
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[8] M. Abe, A. Kubo, S. Yamamoto, Y. Hatoh, M. Murai, Y. Hat-
tori, H. Makabe, T. Nishioka, H. Miyoshi, Biochemistry 2008,
47, 6260–6266.
[9] a) N. Kojima, T. Fushimi, N. Maezaki, T. Tanaka, T. Yamori,
Bioorg. Med. Chem. Lett. 2008, 18, 1637–1641; b) R. A. Duval,
[29]
6898
www.eurjoc.org
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2013, 6886–6899