ORGANIC
LETTERS
2010
Vol. 12, No. 24
5632-5635
Approach Toward the Total Synthesis of
5-Hydroxyaloin A
Kristen J. Procko, Hui Li, and Stephen F. Martin*
Department of Chemistry and Biochemistry, The UniVersity of Texas at Austin, Austin,
Texas 78712, United States
Received September 26, 2010
ABSTRACT
The synthesis of a thiomethyl analogue of 5-hydroxyaloin A has been achieved using benzyne and naphthyne [4 + 2] cycloadditions with
substituted furans. A regiocontrolled cycloaddition was achieved using a silicon tether, and a regioselective ring opening was accomplished
using a sulfide as a directing group.
Over the past three decades, there have been numerous synthetic
approaches to the C-aryl glycoside class of natural products,
owing to both their significant anticancer properties and the
challenges associated with forming the C-glycosidic linkage.1
Toward addressing this problem, we have developed a unified
strategy for preparing the four major classes of C-aryl glyco-
sides.2 The approach features benzyne-furan [4 + 2] cycload-
ditions and has been applied to a formal synthesis of galtamy-
cinone3 and total syntheses of vineomycinone B2 methyl ester4
and isokidamycin.5 We also envisioned that this methodology
Figure 1. Anthrone C-glycosides.
might be extended to enable facile access to the novel class of
anthrone C-glycosides as represented by 5-hydroxyaloin A (1),6
aloin (2),7 and cassialoin (3) (Figure 1).8,9 These C-glycosides,
which are not technically categorized as C-aryl glycosides,
contain a sugar moiety bonded to C(10) of an anthrone ring
via a C-C bond. We thus became interested in the aloe-
derived glycoside 5-hydroxyaloin A (1), which has not yet
been prepared by total synthesis.
(1) For reviews on the synthesis of C-aryl glycosides, see: (a) Jaramillo,
C.; Knapp, S. Synthesis 1994, 1–20. (b) Suzuki, K. Pure Appl. Chem. 1994,
66, 2175–2178. (c) Levy, D. E.; Tang, C. In The Chemistry of C-Glycosides;
Elsevier Science: Tarrytown, NY, 1995. (d) Du, Y. G.; Linhardt, R. J.;
Vlahov, I. R. Tetrahedron 1998, 54, 9913–9959. (e) Liu, L.; McKee, M.;
Postema, M. H. D. Curr. Org. Chem. 2001, 5, 1133–1167.
(2) (a) Kaelin, D. E.; Lopez, O. D.; Martin, S. F. J. Am. Chem. Soc.
2001, 123, 6937–6938. (b) Martin, S. F. Pure Appl. Chem. 2003, 75, 63–
70. (c) Kaelin, D. E., Jr.; Sparks, S. M.; Plake, H. R.; Martin, S. F. J. Am.
Chem. Soc. 2003, 125, 12994–12995.
(6) (a) Bisrat, D.; Dagne, E.; van Wyk, B. E.; Viljoen, A. Phytochemistry
2000, 55, 949–952. (b) Holzapfel, C. W.; Wessels, P. L.; VanWyk, B. E.;
Marais, W.; Portwig, M. Phytochemistry 1997, 45, 97–102.
(3) Apsel, B.; Bender, J. A.; Escobar, M.; Kaelin, D. E., Jr.; Lopez,
O. D.; Martin, S. F. Tetrahedron Lett. 2003, 44, 1075–1077.
(4) (a) Chen, C. L.; Sparks, S. M.; Martin, S. F. J. Am. Chem. Soc.
2006, 128, 13696–13697. (b) Sparks, S.; Chen, C.; Martin, S. Tetrahedron
2007, 63, 8619–8635.
(7) Birch, A. J.; Donovan, F. W. Aust. J. Chem. 1955, 8, 523–528.
(8) Krenn, L.; Pradhan, R.; Presser, A.; Reznicek, G.; Kopp, B. Chem.
Pharm. Bull. 2004, 52, 391–393
(9) Koyama, Y.; Yamaguchi, R.; Suzuki, K. Angew. Chem., Int. Ed.
2008, 47, 1084–1087
.
(5) O’Keefe, B. M.; Mans, D. M.; Kaelin, D. E., Jr.; Martin, S. F. J. Am.
Chem. Soc. 2010, 132, 15528–15530.
.
10.1021/ol102318k 2010 American Chemical Society
Published on Web 11/17/2010