Please do not adjust margins
Green Chemistry
Page 8 of 10
ARTICLE
Journal Name
5. M. Aresta; I. Tommasi, Energ. Convers. Manag., 1997, 38, S373-S378.
reported methods (Table S1) since these conditions avoid excess
equivalents of substrates, base, and solvent.15, 17, 23
6. J. H. Clark, Green Chem., 2006, 8, 17-21.
DOI: 10.1039/C9GC04040D
7. J. H. Clark, Green Chem., 1999, 1, 1-8.
8. R. A. Sheldon, Green Chem., 2007, 9, 1273-1283.
9. R. A. Sheldon, Green Chem., 2016, 18, 3180-3183.
Conclusions
We have developed a three dimensional (3D) porous MgO
framework embedded with Ag0 nanoparticles (MgO@Ag-x = 2, 5, 7,
8%) as a Lewis base-noble metal hybrid catalyst. The porous
structure allows the uniform growth of Ag0 nanoparticles on surface
as well as within the pores of MgO cubes. These hybrid
nanocatalyst are found to be highly efficient for activating and
inserting CO2 in alkynes at ambient pressure for synthesis of a wide
array of esters and lactone heterocycles. The synergy of both metal
components for alkyne activation (Ag0), CO2 incorporation (Ag0) and
high accessibility (MgO) are responsible for its high catalytic
efficiency. The hybrid nanocatalyst performs well over five catalytic
cycles with no significant loss in yield of the ester product. The
feasibility of the CO2 insertion reaction at 1 atm pressure with
higher TOF (4.7 h-1) and low E-factor (2.8) of the present catalytic
system is an order of magnitude (5 to 14-folds) better than
reported methods making it a substantially green approach. Finally,
the MgO@Ag-x hybrid nanocatalyst demonstrates the unique
combination of efficient synergistic catalysis and green
methodology for transformation of CO2 feedstock to valuable
organic molecules.
10. D. C. Graham; C. Mitchell; M. I. Bruce; G. F. Metha; J. H. Bowie; M.
A. Buntine, Organometallics, 2007, 26, 6784-6792.
11. H. Hoberg; K. Jenni; K. Angermund; C. Krüger, Angew. Chem. Int. Ed.,
1987, 26, 153-155.
12. N. Huguet; I. Jevtovikj; A. Gordillo; M. L. Lejkowski; R. Lindner; M.
Bru; A. Y. Khalimon; F. Rominger; S. A. Schunk; P. Hofmann; M.
Limbach, Chem . Eur. J., 2014, 20, 16858-16862.
13. C. S. Yeung; V. M. Dong, J. Am. Chem. Soc., 2008, 130, 7826-7827.
14. B. Yu; Z.-F. Diao; C.-X. Guo; L.-N. He, J. CO2 Util., 2013, 1, 60-68.
15. W.-Z. Zhang; W.-J. Li; X. Zhang; H. Zhou; X.-B. Lu, Org. Lett., 2010,
12, 4748-4751.
16. X. Zhang; W.-Z. Zhang; X. Ren; L.-L. Zhang; X.-B. Lu, Org. Lett., 2011,
13, 2402-2405.
17. X. Zhang; W.-Z. Zhang; L.-L. Shi; C. Zhu; J.-L. Jiang; X.-B. Lu,
Tetrahedron, 2012, 68, 9085-9089.
18. F. Manjolinho; M. Arndt; K. Gooßen; L. J. Gooßen, ACS Catal., 2012,
2, 2014-2021.
19. P. Bhanja; A. Modak; A. Bhaumik, Chem. Eur. J., 2018, 24, 7278-
7297.
20. X.-H. Liu; J.-G. Ma; Z. Niu; G.-M. Yang; P. Cheng, Angew. Chem. Int.
Ed., 2015, 54, 988-991.
21. Y. Ma; Z. Wang; X. Xu; J. Wang, Chinese J. Catal., 2017, 38, 1956-
Conflicts of interest
1969.
22. R. A. Molla; K. Ghosh; B. Banerjee; M. A. Iqubal; S. K. Kundu; S. M.
The authors declare no competing financial interests.
Islam; A. Bhaumik, J. Colloid Interf. Sci., 2016, 477, 220-229.
23. X. Zhang; D. Wang; M. Jing; J. Liu; Z. Zhao; G. Xu; W. Song; Y. Wei; Y.
Sun, ChemCatChem, 2019, 11, 2089-2098.
Acknowledgements
24. J. Shi; L. Zhang; N. Sun; D. Hu; Q. Shen; F. Mao; Q. Gao; W. Wei, ACS
Appl. Mater. Inter., 2019, 11, 28858-28867.
J.M.Z acknowledge the financial support of the National Science
Foundation (CHE-1265703) and the National Institutes of Health
(NIH5R01). D.S.R. thanks Council of Scientific and Industrial
Research (CSIR), India (File Number: 02(0318)/17/EMR-II) for
financial support. U.G. acknowledges DU (DRC/BRS committee) and
CSIR for the exchange visiting opportunity and the award of
Junior/Senior Research Fellowship, respectively. The authors thank
Dr. Barry Stein, Dr. David Gene Morgan (Electron Microscopy
Center) and Dr. Yaroslav Losovyj (Molecular Structure Center) for
their help with ultra-microtme, HR-TEM/STEM and XPS data
collection of the materials, respectively. The authors thank Dr.
Shelby Rader (The Metal Isotopes Laboratory, Department of Earth
and Atmospheric Sciences) for ICP-MS analysis.
25. D. Yu; M. X. Tan; Y. Zhang, Adv. Synth. Catal., 2012, 354, 969-974.
26. G. A. Mutch; S. Shulda; A. J. McCue; M. J. Menart; C. V. Ciobanu; C.
Ngo; J. A. Anderson; R. M. Richards; D. Vega-Maza, J. Am. Chem.
Soc., 2018, 140, 4736-4742.
27. C. Liang; W. Xiao; H. Hao; L. Xiaoqing; L. Chao; Z. Lei; H. Fashui, Biol.
Trace Elem. Res., 2008, 121, 249-257.
28. S. Calderon V; R. E. Galindo; N. Benito; C. Palacio; A. Cavaleiro; S.
Carvalho, J. Phys. D: Appl. Phys., 2013, 46, 325303.
29. S. Benedetti; N. Nilius; P. Torelli; G. Renaud; H. J. Freund; S. Valeri, J.
Phys. Chem. C, 2011, 115, 23043-23049.
30. S. Wuttke; S. M. Coman; G. Scholz; H. Kirmse; A. Vimont; M. Daturi;
S. L. M. Schroeder; E. Kemnitz, Chem. Eur. J., 2008, 14, 11488-
11499.
31. X. Jiang; H. Liu; H. Liang; G. Jiang; J. Huang; Y. Hong; D. Huang; Q. Li;
Notes and references
D. Sun, Ind. Eng. Chem. Res. , 2014, 53, 19128-19135.
32. J. Hu; K. Zhu; L. Chen; C. Kübel; R. Richards, J. Phys. Chem. C, 2007,
111, 12038-12044.
1. D. U. Nielsen; X.-M. Hu; K. Daasbjerg; T. Skrydstrup, Nat. Catal., 2018,
1, 244-254.
33. K. Sasaki; N. Fukumoto; S. Moriyama; T. Hirajima, J. Hazard. mater.,
2011, 191, 240-8.
2. S. C. Peter, ACS Energy Lett., 2018, 3, 1557-1561.
3. J. Wei; Q. Ge; R. Yao; Z. Wen; C. Fang; L. Guo; H. Xu; J. Sun,
34. Y. Yanagisawa; K. Takaoka; S. Yamabe; T. Ito, J. Phys. Chem., 1995,
99, 3704-3710.
Nat.Commun., 2017, 8, 15174.
4. M. Poliakoff; W. Leitner; E. S. Streng, Faraday Discuss., 2015, 183, 9-
35. Y. Zheng; X. Zhang; Z. Bai; Z. Zhang, Rapid Commun. Mass
Spectrom., 2016, 30, 217-225.
17.
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins