1682 J ournal of Medicinal Chemistry, 2000, Vol. 43, No. 9
Reich et al.
then CH2Cl2 (3 × 25 mL). The resin 58 was dried under
vacuum and stored in a desiccator.
Ack n ow led gm en t . The authors thank the mem-
bers of the RVP Project Team for their support and
Takeo Yuno of J apan Tobacco for preparation of com-
pound 1a . We also thank Dr. Robert Love for help with
Figure 2.
3-[3-Ca r ba m oyl-5-(5-p yr id in -2-yl-[1,3,4]oxa ld ia zol-2-yl-
su lfa n ylm eth yl-p h en yl]-a cr ylic Acid Eth yl Ester (25).
Resin 58 (100 mg, 0.063 mmol) in DMF (1 mL) and DIEA (0.11
mL, 0.63 mmol) in a screw-top vial was treated with 2-(2-
pyridyl)-5-thiol-1,3,4-oxadiazole (50 mg, 0.28 mmol) and heated
at 70 °C overnight. The resin was then transferred to a fritted
vessel and washed with DMF (3 × 10 mL), MeOH (3 × 10
mL), and CH2Cl2 (3 × 10 mL). The resin was treated with 95:5
TFA-CH2Cl2 (10 mL), shaken 1 h, and filtered and the filtrate
evaporated. The residue was treated with 10% Et3N-MeOH
(3 mL), then evaporated again. The resulting material was
purified by silica gel chromatography (EtOAc elutant) to yield
10 mg (38%) of 25: 1H NMR (CDCl3) δ 8.75 (1H, d, J ) 4.0),
8.18 (1H, d, J ) 7.7), 8.04-7.88 (3H, m), 7.80 (1H, s), 7.65
(1H, d, J ) 16.2), 7.51-7.47 (1H, m), 6.51 (1H, d, J ) 16.2),
6.40 (1H, br s), 5.70 (1H, br s), 4.54 (2H, s), 4.25 (2H, q,
J ) 7.0), 1.32 (3H, t, J ) 7.0); MS (FAB) 411 (MH+), 433
(MNa+).
Refer en ces
(1) (a) Couch, R. B. Rhinoviruses. In Virology; Fields, B. N., Knipe,
D. M., Eds.; Raven Press: New York, 1990; Volume 1, Chapter
22, pp 607-629. (b) See McKinlay, M. A.; Pevear, D. C.;
Rossman, M. G. Treatment of the Picornavirus Common Cold
by Inhibitors of Viral Uncoating and Attachment. Annu. Rev.
Microbiol. 1992, 46, 635-654 and references therein. (c) Phill-
potts, R. J .; Tyrell, D. A. J . Rhinovirus Colds. Br. Med. Bull.
1985, 41, 386-390. (d) Gwaltney, J . M. Rhinoviruses. In Viral
Infections of Humans; Evans, A. S., Ed.; Plunem Publishing
Corp.: New York, 1982; Chapter 20, pp 491-517. (e) Gwaltney,
J . M. The Common Cold. In Principles and Practices of Infectious
Diseases; Mandell, G. L., Douglas, R. G., Bennett, J . E., Eds.;
J ohn Wiley & Sons: New York, 1985; Chapter 38, pp 351-355.
(2) (a) See Kra¨usslich, H.-G.; Wimmer, E. Viral Proteinases. Annu.
Rev. Biochem. 1988, 57, 701-754 and references therein. (b)
Callahan, P. L.; Mizutani, S.; Colonno, R. J . Molecular Cloning
and Complete Sequence Determination of the RNA Genome of
Human Rhinovirus Type 14. Proc. Natl. Acad. Sci. U.S.A. 1985,
82, 732-736. (c) Stanway, G.; Hughes, P. J .; Mountford, R. C.;
Minor, P. D.; Almond, J . W. The complete nucleotide sequence
of the common cold virus: human rhinovirus 14. Nucleic Acids
Res. 1984, 12, 7859-7875. (d) Lee, W.-M.; Wang, W.; Rueckart,
R. R. Complete sequence of the RNA genome of human rhinovi-
rus 16, a clinically useful common cold virus belonging to the
ICAM-1 receptor group. Virus Genes 1995, 9, 177-181.
(3) (a) Orr, D. C.; Long, A. C.; Kay, J .; Dunn, B. M.; Cameron, J . M.
Hydrolysis of a Series of Synthetic Peptide Substrates by the
Human Rhinovirus 14 3C Protease, Cloned and Express in
Escherichia coli. J . Gen. Virol. 1989, 70, 2931-2942. (b) Cord-
ingly, M. G.; Register, R. B.; Callahan, P. L.; Garsky, V. M.;
Colonno, R. J . Cleavage of Small Peptides In Vitro by Human
Rhinovirus 14 3C Protease Expressed in Escherichia coli. J .
Virol. 1989, 63, 5037-5045.
(4) (a) Matthews, D. A.; Smith, W. A.; Ferre, R. A.; Condon, B.;
Budahazi, G.; Sisson, W.; Villafranca, J . E.; J anson, C. A.;
McElroy, H. E.; Gribskov, C. L.; Worland, S. Structure of Human
Rhinovirus 3C Protease Reveals a Trypsin-like Polypeptide Fold,
RNA-Binding Site, and Means for Cleaving Precursor Polypro-
tein. Cell 1994, 77, 761-771. (b) Bazan, J . F.; Fletterick, R. J .
Viral Cysteine Proteases are Homologous to the Trypsin-like
Family of Serine Proteases: Structural and Functional Implica-
tions. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 7872-7876. (c)
Gorbalenya, A. E.; Blinov, V. M.; Donchenko, A. P. Poliovirus-
encoded Proteinase 3C: A Possible Evolutionary Link Between
Cellular Serine and Cysteine Proteinase Families. FEBS Lett.
1986, 194, 253-257. (d) Allaire, M.; Chernala, M. M.; Malcolm,
B. A.; J ames, M. N. G. Picornaviral 3C cysteine proteinases have
a fold similar to chymotrypsin-like serine proteinases. Nature
1994, 369, 72-76.
(5) (a) Ivanoff, L. A.; Towatari, T.; Ray, J .; Korant, B. D.; Petteway,
S. R., J r. Expression and Site-Specific Mutagenesis of the
Poliovirus 3C Protease in Escherichia coli. Proc. Natl. Acad. Sci.
U.S.A. 1986 83, 5392-5396. (b) Hammerle, T.; Hellen, C. U. T.;
Wimmer, E. Site-Directed Mutagenesis of the Putative Catalytic
Triad of Poliovirus 3C Proteinase J . Biol. Chem. 1991, 266,
5412-541. (c) Kean, K. M.; Teterina, N. L.; Marc, D.; Girard,
M. Analysis of Putative Active Site Residues of the Poliovirus
3C Protease Virology 1991, 181, 609-619.
(6) (a) Webber, S. E.; Tikhe, J .; Worland, S. T.; Fuhrman, S. A.;
Hendrickson, T. F.; Matthews, D. A.; Love, R. A.; Patick, A. K.;
Meador, J . W.; Ferre, R. A.; Brown, E. L.; DeLisle, D. M.; Ford,
C. E.; Binford, S. L. Design, Synthesis, and Evaluation of
Nonpeptidic Inhibitors of Human Rhinovirus 3C Protease. J .
Med. Chem. 1996, 39, 5072-5082. (b) Webber, S. E.; Okano, K.;
Little, T.; Reich, S. H.; Xin, Y.; Fuhrman, S. A.; Matthews, D.
A.; Love, R. A.; Hendrickson, T. F.; Patick, A. K.; Meador, J . W.;
Ferre, R. A.; Brown, E. L.; Ford, C. E.; Binford, S. L.; Worland,
S. T. Tripeptide Aldehyde Inhibitors of Human Rhinovirus 3C
Protease: Design, Synthesis, Biological Evaluation, and Coc-
rystal Structure Solution of P1 Glutamine Isosteric Replace-
ments J . Med. Chem. 1998, 41, 2786-2805. (c) Dragovich, P.
S.; Webber, S. E.; Babine, R. E.; Fuhrman, S. A.; Patick, A. K.;
Matthews, D. A.; Lee, C. A.; Reich, S. H.; Prins, T. J .; Marako-
vits, J . T.; Littlefield, E. S.; Zhou, R.; Tikhe, J .; Ford, C. E.;
Wallace, M. B.; Meador, J . W., III; Ferre, R.; Brown, E. L.;
Binford, S. L.; Harr, J . E. V.; DeLisle, D. M.; Worland, S. T.
Structure-Based Design, Synthesis, and Biological Evaluation
3-[3-Ca r ba m oyl-5-(4-p yr id in -2-yl-p ip er izin -1-m eth yl)-
p h en yl]-a cr ylic Acid Eth yl Ester (26). This was prepared
with 1-(2-pyridyl)piperazine using conditions described for the
synthesis of 25 to yield 12 mg (48%) of 26: 1H NMR (CDCl3)
δ (1H, m), 7.91 (1H, s), 7.79 (1H, s), 7.64 (1H, d, J ) 16.0),
7.62 (1H, s), 7.47-7.41 (1H, m), 6.62-6.57 (2H, m), 6.48 (1H,
d, J ) 16.0), 4.21 (2H, q, J ) 7.0), 3.55 (2H, s), 3.49-3.45 (4H,
m), 2.55-2.51 (4H, m), 1.32 (3H, t, J ) 7.0); MS (FAB) 395
(MH+), 417 (MNa+).
3-(3-{[Ben zyl-(2-et h oxyca r b on yl-et h yl)-a m in o]-m et h -
yl}-5-ca r ba m oyl-p h en yl)-a cr ylic Acid Eth yl Ester (23).
This was prepared with N-benzyl-3-aminopropionic acid ethyl
ester using conditions described for the synthesis of 25 to yield
18 mg (67%) of 23: 1H NMR (CDCl3) δ 7.95 (1H, s), 7.85 (1H,
s), 7.70 (1H, d, J ) 16.0), 7.50 (1H, s), 7.38-7.20 (5H, m), 6.95
(1H, s), 6.60 (1H, d, J ) 16.0), 5.70 (1H, s), 4.25 (2H, q, J )
7.0), 4.15 (2H, q, J ) 7.0), 3.75 (2H, s), 3.63 (2H, s), 2.82 (2H,
t, J ) 5.0), 2.55 (2H, t, J ) 5.0), 1.36 (3H, t, J ) 7.0); MS (ES)
439 (MH+), 461 (MNa+).
3-{3-Ca r ba m oyl-5-[(et h yl-p yr id in -4-ylm et h yl-a m in o)-
m eth yl]-p h en yl}-a cr ylic Acid Eth yl Ester (27). This was
prepared with 4-(ethylaminomethyl)pyridine using conditions
described for the synthesis of 25 to yield 10 mg (43%) of 27:
1H NMR (CDCl3) δ 8.75 (2H, d, J ) 4.0), 8.05 (1H, s), 7.95
(1H, s), 7.75-7.55 (4H, m), 6.50 (1H, d, J ) 16.0), 4.30 (2H, q,
J ) 7.0), 4.18 (2H, q, J ) 8.0), 3.95 (2H, s), 3.90 (2H, s), 1.40-
1.20 (6H, m); MS (ES) 368 (MH+), 390 (MNa+).
4-[3-Ca r b a m oyl-5-(2-et h oxyca r b on yl-vin yl)-b en zyl]-
p ip er a zin e-1-ca r boxylic Acid Eth yl Ester (28). This was
prepared with ethyl-1-piperazine carboxylate using conditions
described for the synthesis of 25 to yield 15 mg (63%) of 28:
1H NMR (CDCl3) δ 8.07 (1H, s), 7.90 (1H, s), 7.66 (1H, s), 4.19
(2H, q, J ) 7.4), 4.14 (2H, s), 4.07 (2H, q, J ) 7.4), 3.68 (4H,
m), 3.55 (4H, m), 1.26 (3H, t, J ) 7.4), 1.19 (3H, t, J ) 7.4).
MS (ES) 390 (MH+), 412 (MNa+).
3-{3-Ca r ba m oyl-5-(4-p yr im id in -2-yl-p ip er a zin -1-ylm e-
th yl)-p h en yl]-a cr ylic Acid Eth yl Ester (29). This was
prepared with 1-(2-pyrimidyl)piperazine using conditions de-
scribed for the synthesis of 25 to yield 15 mg (60%) of 29: 1H
NMR (CDCl3) δ (2H, d, J ) 4.8), 7.88 (1H, s), 7.80 (1H, s),
7.71 (1H, d, J ) 16.2), 7.70 (1H, s), 6.53 (1H, d, J ) 16.2), 6.48
(1H, t, J ) 4.8), 4.27 (2H, q, J ) 7.0), 3.84 (4H, t, J ) 5.2),
3.59 (2H, s), 2.51 (4H, t, J ) 4.8), 1.34 (3H, t, J ) 7.0); MS
(FAB) 396 (MH+), 418 (MNa+).
3-{3-Ca r ba m oyl-5-[4-(2-cya n o-p h en yl)-p ip er a zin -1-yl-
m eth yl]-p h en yl}-a cr ylic Acid Eth yl Ester (30). This was
prepared with 1-(2-cyanophenyl)-piperazine using conditions
described for the synthesis of 25 to yield 19 mg (73%) of 30:
1H NMR (CDCl3) δ 7.90 (1H, s), 7.81 (1H, s), 7.70 (1H, d, J )
15.8), 7.69 (1H, s), 7.57-7.54 (1H, m), 7.51-7.45 (1H, m),
7.03-6.98 (2H, m), 6.53 (1H, d, J ) 15.8), 4.27 (2H, q, J )
7.4), 3.63 (2H, s), 3.24 (4H, q, J ) 4.8), 2.68 (4H, q, J ) 4.8),
1.34 (3H, t, J ) 7.0); MS (FAB) 419 (MH+), 441 (MNa+).