3
aAll reactions were carried out using bromide (1 mmol), NaN3 (1.2 mmol),
N
N
N
12
13
14
3h
1h
85
92
alkynes (1.2 mmol), CuI (1 mol %), in [Bmim]OH (2 mL) at room
temperature.
N3
7
N
N
N
b Reported yields are for the isolated products.
N3
Conclusion
N
N
N
In summary, a simple and practical method was developed for
the generation of diverse 1,4-disubstituted 1,2,3-triazoles in
excellent yields under very mild conditions. The CuAAC
reactions of azides with various alkynes were performed well in
the basic ionic liquid [Bmim]OH without using any bases,
reducing agent and additives. Specifically, one-pot three-
component cycloaddition process starting from bromide
substrates, sodium azide, and alkynes was also effective in this
facile and environmentally friendly alternative protocol.
1h
94
N3
OMe
OMe
N
N
N
N
3h
3h
84
85
30
90
95
N3
15
16
N
N
N3
Acknowledgement
N3
17
18
19
10h
1h
7
We gratefully acknowledge financial support of this work by
CSIR, New Delhi [research grant No. 02(0154)/13/EMR-II].
A.A.A is thankful to CSIR, New Delhi for SRF. DST and UGC,
New Delhi are favourably acknowledged for financial assistance
to the Department of Chemistry, Dibrugarh University.
N
N
N
N3
O
N
N
0.5 h
N
N3
O
O
References and notes:
O
aAll reactions were carried out using azide (1 mmol), alkynes (1.2 mmol),
CuI (1 mol %), in [Bmim]OH (2 mL) at room temperature
1.
(a) Gu, Y.; Jerome, F. Chem. Soc. Rev. 2013, 42, 9550. (b)
Gauchot, V.; Schmitzer, A. R. J. Org. Chem. 2012, 77,4917. (c)
Anastas, P. T.; Warner, J. C. in Green Chemistry: Theory and
Practice (Ed.: Oxford University Press, Oxford), UK, 2000. (d)
Horv´ath, I. T.; Anastas, P. T. Chem. Rev. 2007, 107, 2167.
(a) Polshettiwar, V.; Varma, R. Chem. Soc. Rev. 2008, 37, 1546.
(b) Polshettiwar, V.; Decottignies, A.; Len, C.; Fihri, A.
ChemSusChem, 2010, 3, 502. (c) Horv´ath, I.T.; Anastas, P. T.
Chem. Rev. 2007, 107, 2169.
(a) Susan, M. A. B. H.; Kaneko, T.; Noda, A.; Watanabe, M. J.
Am. Chem. Soc. 2005, 127, 4976. (b) Rogers, R. D. Nature 2007,
447, 917. (c) Torimoto, T.; Tsuda, T.; Okazaki, K.; Kuwabata, S.
Adv. Mater. 2010, 22, 1196.
(a) MacFarlane, D. R.; Forsyth, M.; Howlett, P.C.; Pringle, J. M.;
Sun, J.; Annat, G.; Neil, W.; Izgorodina, E. I. Acc. Chem. Res.
2007, 40 , 1165. (b) Liu, H.; Liu, Y.; Li, J. Phys. Chem. Chem.
Phys. 2010, 12, 1685.
(a) Chauhan, S.; Chauhan, S. M. Tetrahedron 2005, 61, 1015. (b)
Miao, W.; Chan, T.H. Org. Lett. 2003, 5, 5003. (c) Ruß, C.;
König, B. Green Chem. 2012, 14, 2969.
(a) Chiappe, C.; Melai, B.; Sanzone, A.; Valentini, G. Pure Appl.
Chem. 2009, 81, 2035. (b) Amarasekara, A. S. Chem. Rev. 2016,
116, 6133.
(a) Welton, T.; Wasserscheid, P. in Ionic Liquids in Synthesis,
Wiley-VCH, Weinheim, 2007. (b) Hallett, J. P.; Welton, T. Chem.
Rev. 2011, 111, 3508.
Fei, Z.; Geldbach, T. J.; Zhao, D.; Dyson, P. J. Chem.-Eur. J.
2006, 12, 2122.
Chiappe, C.; Mennucci, B.; Pomelli, C. S.; Sanzonea, A.; Marra,
A. Phys. Chem. Chem. Phys. 2010, 12, 1958.
b Reported yields are for the isolated products.
Besides, organic azides are generally safe and stable toward
water and oxygen, those of low molecular weight can be mostly
dangerous and difficult to handle.36 Notably, numerous
methodologies can be found in the literature in order to avoid the
handling and isolation of organic azides for CuAAC reaction. To
2.
3.
4.
demonstrate the generality of CuAAC reaction,
a novel
sequential one-pot procedure involving the formation of the
organic azide in situ from the corresponding bromide with
sodium azide was investigated. When carrying out the
multicomponent model reaction of benzyl bromide, NaN3, and
phenylacetylene under the above-mentioned reaction conditions,
we were delighted to notice that the desired triazole product
formed in excellent yields within 1h (Table 3, entry1). Thus, 1,4-
disubstituted-1,2,3-triazoles could be obtained directly from
different bromides (Table 3, entries 2-4 ).37
5.
6.
7.
Table 3. One-Pot Synthesis of 1,4-Disubstituted 1,2,3-Triazoles
from Bromidesa
R
N
NaN3, CuI, [Bmim]OH
rt
8.
9.
N
N
R Br
R'
R'
10. Hajipour, A. R.; Rafiee, F. J. Iran. Chem. Soc. 2009, 6, 647.
11. Ranu, B. C.; Banerjee, S. Org. Lett. 2005, 7, 3049.
12. (a) Xu, J.-M.; Qian, C.; Liu, B.-K.; Wu, Q.; Lin, X.-F.
Tetrahedron 2007, 63, 986. (b) Ranu, B. C.; Banerjee, S.; Jana, R.
Tetrahedron 2007, 63, 776.
Entry
1
Bromide
Alkyne
Product
Time
1h
yieldb(%)
94
N
N
N
Br
13. Han, S.; Luo, M.; Zhou, X.; He, Z.; Xiong, L. Ind. Eng. Chem.
Res. 2012, 51, 5433.
14. Xu, J.-M. ; Liu, B.-K.; Wu, W.-B.; Qian, C.; Wu, Q.; Lin, X.F. J.
Org. Chem. 2006, 71, 3991.
15. Gu, L.; Wang, W.; Liu, J.; Lia, G.; Yuan, M. Green Chem.
2016, 18, 2604.
16. Kaki, V. R.; Akkinepalli, R. R.; Deb, P. K.; Pichika, M.R. Synth.
Commun. 2015, 45, 119.
17. Siddiqui, I. R.; Waseem, M. A.; Shamim, S.; Shireen; Srivastava,
A. ; Srivastava, A. Tetrahedron Lett. 2013, 54, 4154.
18. Wu, H.; Zhang, F.; Wan, Y.; Ye, L. Lett.Org.Chem. 2016, 5, 209.
19. Swapnil, A. P.; Tayade, Y. A.; Wagh, Y. B.; Dalal, D.S. Chin.
Chem. Lett. 2016, 27, 714.
N
N
N
Br
2
3
1h
1h
1h
92
90
93
O2N
O2N
N
N
N
Br
Cl
Cl
N
N
N
Br
4
Br
Br