D. Emeljanenko, A. Peters, V. Vitske, E. Kaifer, H.-J. Himmel
FULL PAPER
tos before and after heating 5 to a temperature of 300 °C, 1H NMR
spectra (200 MHz, CD2Cl2) for the reaction between 5 and PhC-
(O)Cl and the results of the quantum chemical calculations on the
basicity and electron donor capacity of ttmgb and tdmegb
C. Neuhäuser, E. Kaifer, H. Wadepohl, H.-J. Himmel, Eur. J.
Inorg. Chem. 2009, 2170–0178; f) A. Peters, C. Trumm, M. Re-
inmuth, D. Emeljanenko, E. Kaifer, H.-J. Himmel, Eur. J. Inorg.
Chem. 2009, 3791–3800; g) M. Reinmuth, U. Wild, E. Kaifer,
M. Enders, H. Wadepohl, H.-J. Himmel, Eur. J. Inorg. Chem.
2009, 4795–4808; h) V. Vitske, C. König, E. Kaifer, O. Hübner,
H.-J. Himmel, Eur. J. Inorg. Chem. 2010, 115–126; i) P. Ro-
quette, A. Maronna, A. Peters, E. Kaifer, H.-J. Himmel, Ch.
Hauf, V. Herz, E.-W. Scheidt, W. Scherer, Chem. Eur. J. 2010,
16, 1336–1350; j) D. Emeljanenko, A. Peters, N. Wagner, J.
Beck, E. Kaifer, H.-J. Himmel, Eur. J. Inorg. Chem. 2010, 1839–
1846; k) C. Trumm, O. Hübner, E. Kaifer, H.-J. Himmel, Eur.
J. Inorg. Chem. 2010, 3102–3108.
a) R. Schwesinger, H. Schlemper, C. Hasenfratz, J. Willaredt,
T. Dambacher, T. Breuer, C. Ottaway, M. Fletschinger, J. Boele,
H. Fritz, D. Putzas, H. W. Rotter, F. G. Bordwell, A. V. Satish,
G.-Z. Ji, E.-M. Peters, K. Peters, H. G. von Schnering, L. Walz,
Liebigs Ann. 1996, 1055–1081; b) I. A. Koppel, R. Schwesinger,
T. Breuer, P. Burk, K. Herodes, I. Koppel, I. Leito, M. Mis-
hima, J. Phys. Chem. A 2001, 105, 9575–9586.
V. Raab, J. Kipke, R. M. Gschwind, J. Sundermeyer, Chem.
Eur. J. 2002, 8, 1682–1693.
B. Kovacˇevic´, Z. B. Maksic´, Chem. Eur. J. 2002, 8, 1694–1702.
D. Margetic, in: Superbases for Organic Synthesis (Ed.: T. Ishi-
kawa), chapter 2, p. 9–48, Wiley 2009, and references given
therein.
B. Kovac´evic´, Z. B. Maksic´, Org. Lett. 2001, 3, 1523–1526.
R. Schwesinger, Nachr. Chem. Tech. Lab. 1990, 38, 1214–1226,
and references given therein.
S. Bommers, H. Beruda, N. Dufour, M. Paul, A. Schier, H.
Schmidbaur, Chem. Ber. 1995, 128, 137–142.
Acknowledgments
The authors gratefully acknowledge continuous financial support
by the Deutsche Forschungsgemeinschaft (DFG).
[1] A. Pross, D. J. DeFrees, B. A. Levi, S. K. Pollack, L. Radom,
W. J. Hehre, J. Org. Chem. 1981, 46, 1693–1699.
[2] D. A. Dixon, P. A. Charlier, P. G. Gassman, J. Am. Chem. Soc.
1980, 102, 3957–3959.
[3] J. P. Richard, G. Williams, J. Gao, J. Am. Chem. Soc. 1999, 121,
715–726.
[4] E. M. Kaiser, C. R. Hauser, J. Org. Chem. 1968, 33, 3402–3404.
[5] P. R. Albuquerque, A. R. Pinhas, J. A. Krause-Bauer, Inorg.
Chim. Acta 2000, 298, 239–244.
[6] See, for example: a) L. Rossi, M. Feroci, A. Inesi, Mini-Rev.
Org. Chem. 2005, 2, 343–357; b) M. Feroci, M. Orsini, L. Pal-
ombi, L. Rossi, A. Inesi, Electrochim. Acta 2005, 50, 2029–
2036.
[7] M. Feroci, M. A. Casadei, M. Orsini, L. Palombi, A. Inesi, J.
Org. Chem. 2003, 68, 1548–1551.
[8] a) K. Suzuki, H. Yamamoto, S. Kanie, J. Organomet. Chem.
1974, 73, 131 –136; b) R. Ros, R. A. Michelin, R. Bataillard,
R. Roulet, J. Organomet. Chem. 1977, 139, 355–359; c) R.
McCrindle, G. Ferguson, A. J. McAlees, M. Parvez, P. J. Rob-
erts, J. Chem. Soc., Dalton Trans. 1982, 1699–1708.
[9] A. D. English, T. Herskovitz, J. Am. Chem. Soc. 1977, 99,
1648–1649.
[10] M. G. Crestani, A. Steffen, A. M. Kenwright, A. S. Batsanov,
J. A. K. Howard, T. B. Marder, Organometallics 2009, 28,
2904–2914.
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
M. E. Olmos, Adv. Organomet. Chem. 2005, 52, 77–141.
A. S. K. Hashmi, T. D. Ramamurthi, F. Rominger, J. Or-
ganomet. Chem. 2009, 694, 592–597.
A. Fürstner, M. Alcarazo, R. Goddard, C. W. Lehmann, An-
gew. Chem. 2008, 120, 3254–3258; Angew. Chem. Int. Ed. 2008,
47, 3210–3214.
[29]
[30]
[31]
[32]
A. Del Pra, E. Forsellini, G. Bombieri, R. A. Michelin, R. Ros,
J. Chem. Soc., Dalton Trans. 1979, 1862–1866.
[11] T. Tsuda, T. Nakatsuka, T. Hirayama, T. Saegusa, J. Chem.
Soc., Chem. Commun. 1974, 557–558.
[12] E. J. Corey, I. Kuwajima, Tetrahedron Lett. 1972, 13, 487–489.
[13] R. S. Ramón, N. Marion, S. P. Nolan, Chem. Eur. J. 2009, 15,
8695–8697.
J. Skoweranda, W. Wieczorek, M. Bukowska-Strzyzewska, A.
˙
Grodzicki, J. Crystallogr. Spectrosc. Res. 1991, 22, 527–531.
See, for example: a) M. McPartlin, R. Mason, L. Malatesta, J.
Chem. Soc. C 1969, 334; b) F. Cariati, L. Naldini, Inorg. Chim.
Acta 1971, 5, 172–174; c) P. A. Bartlett, B. Bauer, S. J. Singer,
J. Am. Chem. Soc. 1978, 100, 5085–5089; d) R. C. B. Copley,
D. M. P. Mingos, J. Chem. Soc., Dalton Trans. 1996, 479–489.
See, for example, for some recent work: a) R. K. Smith, S. U.
Nanayakkara, G. H. Woehrle, T. P. Pearl, M. M. Blake, J. E.
Hutchison, P. S. Weiss, J. Am. Chem. Soc. 2006, 128, 9266–
9267; b) S. Ariyasu, A. Onoda, R. Sakamoto, T. Yamamura,
Dalton Trans. 2009, 3742–3747; c) S. Ariyasu, A. Onoda, R.
Sakamoto, T. Yamamura, Bioconjugate Chem. 2009, 20, 2278–
2285.
[14] A. Peters, E. Kaifer, H.-J. Himmel, Eur. J. Org. Chem. 2008,
5907–5914.
[15] A. Peters, C. Trumm, M. Reinmuth, D. Emeljanenko, E.
Kaifer, H.-J. Himmel, Eur. J. Inorg. Chem. 2009, 3791–3800.
[16] V. Vitske, C. König, O. Hübner, E. Kaifer, H.-J. Himmel, Eur.
J. Inorg. Chem. 2010, 115–126.
[33]
[17] A. Peters, M. Reinmuth, U. Wild, S. Leingang, P. D. Marzenell,
E. Kaifer, H.-J. Himmel, Eur. J. Inorg. Chem. 2010, submitted.
[18] There is an approved and clear definition of the term “su-
perbase” from Caubère, see: Chem. Rev. 1993, 93, 2317–2334,
and also the first chapter of the comprehensive book Su-
perbases for Organic Synthesis (Ed.: T. Ishikawa, Wiley, 2009).
It reads: The term “superbase” should only be applied to bases
resulting from a mixing of two (or more) bases leading to a
new basic species possessing inherent new properties. The term
“superbase” does not mean a base is thermodynamically and/or
kinetically stronger than another; instead it means that a basic
reagent is created by combining the characteristics of several dif-
ferent bases. The guanidine ttmgn combines the basicity of gua-
nidino groups with Alder’s concept of a proton sponge. There-
fore ttmgn clearly is a “superbase”.
[19] a) U. Wild, P. Roquette, E. Kaifer, J. Mautz, H. Wadepohl, H.-
J. Himmel, Eur. J. Inorg. Chem. 2008, 1248–1257; b) A. Peters,
U. Wild, O. Hübner, E. Kaifer, J. Mautz, H.-J. Himmel, Chem.
Eur. J. 2008, 14, 7813–7821; c) U. Wild, O. Hübner, A. Ma-
ronna, M. Enders, E. Kaifer, H. Wadepohl, H.-J. Himmel, Eur.
J. Inorg. Chem. 2008, 4440–4447; d) A. Peters, E. Kaifer, H.-J.
Himmel, Eur. J. Org. Chem. 2008, 5907–5914; e) D. Domide,
[34]
[35]
R. Barhdadi, J. Gal, M. Heintz, M. Troupel, J. Périchon, Tetra-
hedron 1993, 49, 5091–5098.
C–H activation with molecular gold complexes was reported
previously, see: a) S. Komiya, T. Sone, Y. Usui, M. Hirano, A.
Fukuoka, Gold Bull. 1996, 29, 131–136; b) A. S. K. Hashmi,
R. Salathé, T. M. Frost, L. Schwarz, J.-H. Choi, Appl. Catal.
A 2005, 291, 238–246; c) A. S. K. Hashmi, S. Schäfer, M.
Wölfle, C. D. Gil, P. Fischer, A. Laguna, M. C. Blanco, M. C.
Gimeno, Angew. Chem. 2007, 119, 6297–6300; Angew. Chem.
Int. Ed. 2007, 46, 6184–6187; d) I. I. F. Boogaerts, S. P. Nolan,
J. Am. Chem. Soc., DOI: 10.1021/ja103429q.
P. Lu, T. C. Boorman, A. M. Z. Slawin, I. Larrosa, J. Am.
Chem. Soc., DOI: 10.1021/ja101525w.
DENZO-SMN, Data processing software, Nonius 1998; http://
www.nonius.com.
[36]
[37]
[38]
a) G. M. Sheldrick, SHELXS-97, Program for Crystal Struc-
ture Solution, University of Göttingen, Germany, 1997; http://
4788
www.eurjic.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2010, 4783–4789