of the associated chemo-, regio-, and stereoselectivity and
their substrate dependence is required. Dienamines are readily
formed by condensation of amines with R,ꢀ-unsaturated
carbonyl compounds via iminium intermediates followed by
deprotonation in the γ-position (Scheme 1). The vinylogy
substrate, we chose (E)-4-phenylpent-2-enal (2a) because the
phenyl group is capable of disfavoring the γ-substitution
pathways sterically and electronically11 (Scheme 2). In the
Scheme 2
.
Rationale for the Observed Products in the
R-Selective Alkylation of 2a
Scheme 1. Formation of Dienamine Intermediates
principle8 dictates bidentate reactivity by transmission of
nucleophilic behavior through the conjugated π-system.
Accordingly, dienamine intermediates can be trapped by
suitable electrophiles E+ in the R- and γ-position. In addition,
dienamines have been employed as an electron-rich diene
component in regular Diels-Alder-type reactions9 as well
as a dienophile in aza-Diels-Alder reactions with an inverse
electron demand.10
In previously reported reactions via dienamine intermedi-
ates, high regioselectivity often required the use of substituted
homologues in order to shut down competing pathways. For
example, γ-disubstituted aldehydes were used by Chen in
selective R-alkylations with nitrostyrenes.11 Recently, Mel-
chiorre employed 3-methylcyclohexenones in γ-substitutions
with nitrostyrenes.12 In our previous work on Rauhut-Currier-
type reactions,13 ꢀ-disubstitution was essential for high
reactivity and selectivity. In order to probe the general
ambident reactivity of dienamine intermediates, we decided
to study their alkylation with stabilized cations derived from
bis[4-(dimethylamino)phenyl]methanol (1).14,15 The enamine
version of this enantioselective SN1-type alkylation16,17
reaction has been pioneered by Cozzi.18,19 As a starting
screening of diarylprolinol-derived catalysts with TFA as a
cocatalyst, only VI, VII, and X were effective in both
reactivity and enantioselectivity affording an E/Z mixture of
3a20 in ratios up to 6:1 (Table 1). Interestingly, less hindered
catalysts II-V (entries 2-5) gave better E/Z ratios at the
cost of lowered enantioselectivity.21 Condensation of 2a with
the amine catalyst affords two interconverting diastereomeric
dienamines, as evidenced by NMR spectroscopy. The E/Z
ratio of the R-alkylation products results directly from the
ratio of the diastereomeric dienamines coupled with their
respective rates of alkylation (Scheme 2).21
As a key factor in dienamine equilibration and carbocation
formation, we screened several organic acids as an additive
as well as different solvents (Table 2). Surprisingly, no
(16) For reviews, see: (a) Melchiorre, P. Angew. Chem., Int. Ed. 2009,
48, 1360. (b) Alba, A.-N.; Viciano, M.; Rios, R. ChemCatChem 2009, 1,
437.
(17) For other approaches, see: (a) Vignola, N.; List, B. J. Am. Chem.
Soc. 2004, 126, 450. (b) Fu, A.; List, B.; Thiel, W. J. Org. Chem. 2006,
71, 320. (c) Xie, H.; Zu, L.; Li, H.; Wang, J.; Wang, W. J. Am. Chem. Soc.
2007, 129, 10886. (d) Rios, R.; Sunde´n, H.; Vesely, J.; Zhao, G.-L.;
Eriksson, L.; Co´rdova, A. AdV. Synth. Catal. 2007, 349, 1028. (e) Rios, R.;
Vesely, J.; Sunde´n, H.; Ibrahem, I.; Zhao, G.-L.; Co´rdova, A. Tetrahedron
Lett. 2007, 48, 5835. (f) Ibrahem, I.; Co´rdova, A. Angew. Chem., Int. Ed.
2006, 45, 1952. (g) Beeson, T. D.; Mastracchio, A.; Hong, J.-B.; Ashton,
K.; MacMillan, D. W. C. Science 2007, 316, 582. (h) Mukherjee, S.; List,
B. J. Am. Chem. Soc. 2007, 129, 11336. (i) Nicewicz, D. A.; MacMillan,
D. W. C. Science 2008, 322, 77. (j) Enders, D.; Wang, C.; Bats, J. W.
Angew. Chem., Int. Ed. 2008, 47, 7539. (k) Shaikh, R. R.; Mazzanti, A.;
Petrini, M.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2008, 47,
8707. (l) Brown, A. R.; Kuo, W.-H.; Jacobsen, E. N. J. Am. Chem. Soc.
2010, 132, 9286.
(8) Fuson, R. C. Chem. ReV. 1935, 16, 1.
(9) (a) Hong, B.-C.; Tseng, H.-C.; Chen, S.-H. Tetrahedron 2007, 63,
2840. (b) Hong, B.-C.; Wu, M.-F.; Tseng, H.-C.; Huang, G.-F.; Su, C.-F.;
Liao, J.-H. J. Org. Chem. 2007, 72, 8459. (c) de Figueiredo, R. M.; Fro¨hlich,
R.; Christmann, M. Angew. Chem., Int. Ed. 2008, 47, 1450.
(10) (a) Han, B.; He, Z.-Q.; Li, J.-L.; Li, R.; Jiang, K.; Liu, T.-Y.; Chen,
Y.-C. Angew. Chem., Int. Ed. 2009, 48, 5474. For an example of an inverse
electron-demand Diels-Alder reaction, see: (b) Li, J.-L.; Kang, T.-R.; Zhou,
S.-L.; Li, R.; Wu, L.; Chen, Y.-C. Angew. Chem., Int. Ed. 2010, 49, 6418.
(11) Han, B.; Xiao, Y.-C.; He, Z.-Q.; Chen, Y.-C. Org. Lett. 2009, 11,
4660.
(12) Bencivenni, G.; Galzerano, P.; Mazzanti, A.; Bartoli, G.; Melchiorre,
P. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, DOI: 10.1073/pnas.1001150107.
(13) Marque´s-Lo´pez, E.; Herrera, R. P.; Marks, T.; Jacobs, W. C.;
Ko¨nning, D.; de Figueiredo, R. M.; Christmann, M. Org. Lett. 2009, 11,
4116.
(18) (a) Cozzi, P. G.; Benfatti, F.; Zoli, L. Angew. Chem., Int. Ed. 2009,
48, 1313. (b) Benfatti, F.; Benedetto, E.; Cozzi, P. G. Chem.sAsian J. 2010,
5, 2047.
(14) For a kinetic investigation of reactions involving carbocations, see:
(a) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66. (b)
Kempf, R.; Hampel, N.; Ofial, A. R.; Mayr, H. Chem.sEur. J. 2003, 9,
2209. (c) Phan, T. B.; Nolte, C.; Kobayashi, S.; Ofial, A. R.; Mayr, H.
(19) For a more recent example, see: Zhang, L.; Cui, L.; Li, X.; Li, J.;
Luo, S.; Cheng, J.-P. Chem.sEur. J. 2010, 16, 2045.
(20) The absolute configuration of (E)-3a was shown to be R by X-ray
crystallography. See Supporting Information.
J. Am. Chem. Soc. 2009, 131, 11392
.
(21) NMR and computational studies probing the stability of the
dienamine and its connection with the E/Z ratio in the final products will
be reported in due course.
(15) McCLelland, R. A.; Kanagasabapathy, V. M.; Banait, N. S.;
Steenken, S. J. J. Am. Chem. Soc. 1989, 111, 3966
Org. Lett., Vol. 13, No. 1, 2011
.
71