continued development of facilitated chromatography-free
Mitsunobu protocols for parallel synthesis is warranted.
Ring-opening metathesis polymerization (ROMP)-derived,
high-load oligomeric reagents and scavengers have been
utilized in many chromatography-free transformations, suited
for parallel synthesis.4,5 Previously we reported the applica-
tion of a polymer-on-polymer (PoP) Mitsunobu reaction
employing both ROMP-derived oligomeric triphenylphos-
phine and oligomeric azodicarboxylate.6 This multipolymer
platform was successfully utilized to transform a variety of
small molecules via an efficient Mitsunobu reaction. Facile
purification was achieved via precipitation and filtration of
now insoluble polymeric reagents and spent oligomers to
yield the desired products in high purity. We herein report
a new variant termed a monomer-on-monomer (MoM)7
Mitsunobu reaction that utilizes norbornenyl-tagged (Nb-
tagged) reagents that are rapidly sequestered post reaction
using ring-opening metathesis polymerization that is initiated
by any of three methods utilizing Grubbs catalyst cat-B:8
(i) free catalyst in solution, (ii) surface-initiated catalyst-
armed silica, or (iii) surface-initiated catalyst-armed Co/C
magnetic nanoparticles (Np’s) (Figure 1).
Figure 1. Norbornenyl-tagged reagents and Co/C Np’s for MoM
Mitsunobu Reactions.
monomeric reagents. This is an important feature that enables
reactions to be performed without the need of excess
reagents, reaction times (heterogeneous kinetics), or harsher
conditions to name a few classic properties when utilizing
immobilized reagents. With the norbornenyl-tagged PPh3
(Nb-TPP) and DEAD (Nb-BEAD)6a readily accessed, we
investigated their application in the Mitsunobu reaction
utilizing a variety of benzoic acids and benzyl alcohols (Table
1, entry 1-6). Utilizing 1.3 equiv of both reagents, the
In comparison to solid-phase immobilized reagents, the
utilization of norbornenyl-tagged (Nb) reagents allows for
reactions to be carried out in solution phase with small
Table 1. Mitsunobu Esterification Utilizing Nb-TPP and
Nb-DEAD
(3) (a) Dembinski, R. Eur. J. Org. Chem. 2004, 2763–2772. (b)
Reynolds, A. J.; Kassiou, M. Curr. Org. Chem 2009, 13, 1610–1632, and
references therein. (c) Chu, Q.; Henry, C.; Curran, D. P. Org. Lett. 2008,
10, 2453–2456. (d) Lan, P.; Porco, Jr, J. A.; South, M. S.; Parlow, J. J.
J. Com. Chem 2003, 5, 660–669. (e) Starkey, G. W.; Parlow, J. J.; Flynn,
D. L. Bioorg. Med. Chem. Let 1998, 8, 2385–2390. (f) Danapani, S.;
Newsome, J. J.; Curran, D. P. Tetrahedron Lett. 2004, 45, 6653–6656. (g)
But, T. Y. S.; Toy, P. H. J. Am. Chem. Soc. 2006, 128, 9636–9637. (h)
Taft, B. R.; Swift, E. C.; Lipshutz, B. H. Synthesis 2009, 2, 322–334.
(4) For reviews concerning ROMP reagents, see: (a) Barrett, A. G. M.;
Hopkins, B. T.; Ko¨bberling, J. Chem. ReV. 2002, 102, 3301–3324. (b) Flynn,
D. L.; Hanson, P. R.; Berk, S. C.; Makara, G. M. Curr. Opin. Drug
DiscoVery DeV. 2002, 5, 571–579. (c) Harned, A. M.; Probst, D. A.; Hanson,
P. R. The Use of Olefin Metathesis in Combinatorial Chemistry: Supported
and Chromatography-Free Syntheses. In Handbook of Metathesis; Grubbs,
R. H., Ed.; Wiley-VCH: Weinheim, Germany, 2003; pp 361-402. (d)
Harned, A. M.; Zhang, M.; Vedantham, P.; Mukherjee, S.; Herpel, R. H.;
Flynn, D. L.; Hanson, P. R. Aldrichimica Acta 2005, 38, 3–16.
entry
R1
R2-OH
2-MeBnOH
yield (%) purity (%)
1
4-NO2
4-NO2
4-NO2
2,4-Cl
4-NO2
4-NO2
2-Me
3,4-Cl
4-NO2
2,6-Cl
75
77
78
79
84
81
81
91
74
71
73
76
>95
>95
>95
>95
>95
>95
>95
>95
>95
>95
>95
>95
2
3,5-OMeBnOH
3-Me-2-butene-1-ol
2-MeBnOH
3
4
5
4-ClBnOH
6
4-BrBnOH
7
3-NMe2BnOH
3-OMeBnOH
8
(5) (a) Long, T.; Maity, P. K.; Samarakoon, T. B.; Hanson, P. R. Org.
Lett. 2010, 12, 2904–2907. (b) Rolfe, A.; Probst, D.; Volp, K.; Omar, I.;
Flynn, D.; Hanson, P. R. J. Org. Chem. 2008, 73, 8785–8790. (c) Stoianova,
D. S.; Yao, L.; Rolfe, A.; Samarakoon, T.; Hanson, P. R. Tetrahedron Lett.
2008, 49, 4553–4555. (d) Barrett, A. G. M.; Hopkins, B. T.; Love, A. C.;
Tedeschi, L. Org. Lett. 2004, 6, 835–837. (e) Arstad, E.; Barrett, A. G. M.;
Tedeschi, L. Tetrahedron Lett. 2003, 44, 2703–2707. (f) Mukherjee, S.;
Poon, K. W. C.; Flynn, D. L.; Hanson, P. R. Tetrahedron Lett. 2003, 44,
7187–7190.
9
(R)-MeCH(OH) CO2Et
(R)-MeCH(OH)CO2Et
10
11
12
3-NMe2 (R)-MeCH(OH) CO2Et
4-Cl
(R)-MeCH(OH) CO2Et
a Crude purity determined by 1H NMR following precipitation of
polymers with EtOAc and filtration though silica SPE.
(6) (a) Harned, A. M.; Song He, H. S.; Toy, P. H.; Flynn, D. L.; Hanson,
P. R. Org. Lett. 2005, 127, 52–53. (b) Of notable importance is the seminal
advances made by Barrett and co-workers demonstrating the concept of
reagent annihilation (norbornenyl-tagged DEAD); see: (c) Barrett, A. G. M.;
Roberts, R. S.; Schro¨der, J. Org. Lett. 2000, 2, 2999–3002. For additional
examples of in situ scavenging, see: (d) Moore, J. D.; Harned, A. M.; Henle,
J.; Flynn, D. L.; Hanson, P. R. Org. Lett. 2002, 4, 1847–1849.
desired esters were synthesized in good yield and purity
without the need for standard chromatography.
Key to this efficient purification was the phase switching
of the Nb-tagged monomeric reagents/spent reagents by the
utilization of ROM polymerization. This process transforms
the Nb-monomeric reagents into a soluble oligomeric
polymer, possessing a differential solubility profile to the
desired products. Precipitation of the spent oligomer in Et2O
or MeOH, followed by filtration via a silica SPE, yields the
desired products in high crude purity. This purification
protocol can be observed via TLC analysis, whereby a
multispot crude reaction is purified to a single product spot
utilizing the polymerization sequestration protocol. Building
(7) MoM is an acronym for reactions that utilize two monomeric species
(“monomer-on-monomer”) to carry out a transformation, in which upon
completion these monomers are sequestered via polymerization. This
acronym correlates to our previous use of ”polymer-on-polymer” (PoP),
for reactions employing the simultaneous use of two polymeric species that
react together in a transformation; see ref 6a.
(8) Cat-B: (a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org.
Lett. 1999, 1, 953–956. It should be noted that the Grubbs first generation
catalyst (PCy3)2(Cl)2RudCHPh [Cat-A] is deactivated in the presence of
Ph3PdO. (b) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc.
1996, 118, 100–110. (c) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs,
R. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039–2041.
Org. Lett., Vol. 13, No. 1, 2011
9