Article
Herein we report on the synthesis and characterization of
Inorganic Chemistry, Vol. 50, No. 1, 2011 359
using NHC or LiN(SiMe3)2 as a dehydrochlorinating agent.
As a continuation of these studies, we report herein a new
method for the preparation of base-stabilized silylenes
from Si2Cl6.
pentacoordinate silicon fluorides containing bidentate mono-
(amidinate, guanidinate) and bifunctional (triazapentadienate)
ligands by efficient fluorination of their chloro analogues
1a-1c with Me3SnF. The synthesis and characterization of
L2SiCl3 (1b) and L3SiCl2 (1c) are reported for the first time.
One pot methods for the synthesis of compounds with low
valent elements are undoubtedly important to obtain suffi-
cient amount of starting material for new reactions. Recently
we reported6d a nearly quantitative (79% yield) synthesis of
NHC-stabilized dichlorosilylenes by a clean one-step reac-
tion of NHC with HSiCl3. We further described6f the high-
yield synthesis of monochlorosilylene L1SiCl from L1SiHCl2
Experimental Section
General Procedures. All manipulations were carried out under
an inert atmosphere of nitrogen using standard Schlenk line tech-
niques or a glovebox. The solvents used were purified by MBRAUN
solvent purification system MB SPS-800. Compound 1c6a and
0
0
L3 Li (L3 = Me3SiNC(NMe2)NC(NMe2)NAr and Ar is
2,6-iPr2C6H3)11 were prepared according to literature methods.
All chemicals received from Aldrich were used without further
purification. C6D6 and THF-d8 were dried over Na metal and
distilled under nitrogen prior to use. 1H, 13C, 19F, and 29Si NMR
spectra were recorded using Bruker Avance DPX 200 or Bruker
Avance DRX 500 spectrometers. Elemental analyses were ob-
tained from the Analytical Laboratory of the Institute of Inor-
(3) (a) Bassindale, A. R.; Taylor, P. G. In The Chemistry of Organic
Silicon Compounds; Patai, S., Rappoport, Z., Eds.; John Wiley & Sons Ltd.:
New York, 1989; Part 1, pp 839-892. (b) Corriu, R. J. P.; Young, J. C. In The
Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; John
Wiley & Sons: Chichester, U.K., 1989; Part 2, pp 1241-1288. (c) Johnson, S. E.;
Day, R. O.; Holmes, R. R. Inorg. Chem. 1989, 28, 3182–3189. (d) Holmes, R. R.
Chem. Rev. 1990, 90, 17–31. (e) Kost, D.; Gostevskii, B.; Kalikhman, I. Pure
Appl. Chem. 2007, 79, 1125–1134. (f) Prince, P. D.; Bearpark, M. J.; McGrady,
G. S.; Steed, J. W. J. Chem. Soc., Dalton Trans. 2008, 271–282. (g) Kost, D.;
Kalikhman, I. Acc. Chem. Res. 2009, 42, 303–314.
(4) (a) Marsden, C. J. Inorg. Chem. 1983, 22, 3177–3178. (b) Hu, J.; Schaad,
L. J.; Hess, B. A., Jr. J. Am. Chem. Soc. 1991, 113, 1463–1464. (c) Alkorta, I.;
Rozas, I.; Elguero, J. J. Phys. Chem. A 2001, 105, 743–749. (d) Ignatyev, I. S.;
Schaefer, H. F., III. J. Phys. Chem. A 2001, 105, 7665–7671. (e) Fleischer, H.
Eur. J. Inorg. Chem. 2001, 393–404. (f) Davydova, E. I.; Timoshkin, A. Y.;
Sevastianova, T. N.; Suvorov, A. V.; Frenking, G. J. Mol. Struct. THEOCHEM
2006, 767, 103–111. (g) Pierrefixe, S. C. A. H.; Guerra, C. F.; Bickelhaupt, F. M.
Chem.;Eur. J. 2008, 14, 819–828. (h) Couzijn, E. P. A.; van den Engel, D. W. F.;
Slootweg, J. C.; de Kanter, F. J. J.; Ehlers, A. W.; Schakel, M.; Lammertsma, K.
€
ganic Chemistry at the University of Gottingen.
Preparation of L2SiCl3 (1b). To 100 mL of a diethyl ether solu-
tion of 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine
(L2H) (1.54 g, 11.06 mmol) was added a 2.5 M solution of tBuLi
(4.45 mL, 11.12 mmol) at -78 °C, and the mixture was stirred
for 4 h at room temperature. Into the resulting white suspension
SiCl4 (1.30 mL, 11.34 mmol) was syringed at -78 °C with con-
stant stirring. The reaction mixture was further stirred overnight.
The volatiles were removed under vacuum to obtain a white solid.
The solid was dissolved in toluene (50 mL) and filtered through
Celite. The resulting filtrate was reduced to 25 mL under vacuum
and stored at -35 °C in a freezer to yield compound 1b as colorless
crystals (2.71 g, 90%). Anal. Calcd (%) for C7H12Cl3N3Si (M =
272.63): C, 30.84; H, 4.44; N, 15.41. Found (%): C, 30.79; H, 4.34;
N, 15.29. 1H NMR (200 MHz, C6D6, 298 K): δ1.16 (m, 4H, CH2),
2.11 (t, J = 5.6 Hz, 4H, CH2), 2.93 (t, J = 5.6 Hz, 4H, CH2) ppm.
13C{1H} NMR (75 MHz, C6D6, 298 K): δ 22.53 (CH2), 37.54
(CH2), 44.04 (CH2), 154.62 (CN3) ppm. 29Si NMR (59 MHz,
C6D6, 298 K): δ -103.42 ppm.
ꢀ
ꢀ
J. Am. Chem. Soc. 2009, 131, 3741–3751. (i) Halloczki, O.; Nyulaszi, L.
Organometallics 2009, 28, 4159–4164.
(5) Kocher, N.; Henn, J.; Gostevskii, B.; Kost, D.; Kalikhman, I.; Engels,
B.; Stalke, D. J. Am. Chem. Soc. 2004, 126, 5563–5568.
(6) (a) So, C.-W.; Roesky, H. W.; Magull, J.; Oswald, R. B. Angew.
Chem., Int. Ed. 2006, 45, 3948–3950. So, C.-W.; Roesky, H. W.; Magull, J.;
Oswald, R. B. Angew. Chem. 2006, 118, 4052–4054. (b) So, C.-W.; Roesky,
H. W.; Gurubasavaraj, P. M.; Oswald, R. B.; Gamer, M. T.; Jones, P. G.; Blaurock,
S. J. Am. Chem. Soc. 2007, 129, 12049–12054. (c) Wang, Y.; Xie, Y.; Wei, P.;
King, R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. Science 2008,
321, 1069–1071. (d) Ghadwal, R. S.; Roesky, H. W.; Merkel, S.; Henn, J.; Stalke,
D. Angew. Chem., Int. Ed. 2009, 48, 5683–5686. Ghadwal, R. S.; Roesky, H. W.;
Merkel, S.; Henn, J.; Stalke, D. Angew. Chem. 2009, 121, 5793–5796.
(e) Ghadwal, R. S.; Sen, S. S.; Roesky, H. W.; Granitzka, M.; Kratzert, D.;
Merkel, S.; Stalke, D. Angew. Chem., Int. Ed. 2010, 49, 3952–3955. Angew.
Chem. 2010, 122, 4044-4047. (f) Sen, S. S.; Roesky, H. W.; Stern, D.; Henn, J.;
Stalke, D. J. Am. Chem. Soc. 2010, 132, 1123–1126.
(7) (a) Tandura, S. N.; Voronkov, M. G.; Alekseev, N. V. Top. Curr.
Chem. 1986, 131, 99–189. (b) Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C.
Chem. Rev. 1993, 93, 1371–1448. (c) Chuit, C.; Corriu, R. J. P.; Reye, C. In
Chemistry of Hypervalent Compounds; Akiba, K., Ed.; Wiley-VCH: New York,
1999, pp 81-146. (d) Kira, M.; Zhang, L. C. In Chemistry of Hypervalent
Compounds; Akiba, K., Ed.; Wiley-VCH: New York, 1999, pp 147-170.
(e) Katsukiyo, M.; Hosomi, A. In Main Group Metals in Organic Synthesis;
Yamamoto, H., Oshima, K., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 2, 409-592.
(f) Rendler, S.; Oestreich, M. Synthesis 2005, 1727–1747. (g) Denmark, S. E. J. Org.
Chem. 2009, 74, 2915–2927.
(8) (a) Denmark, S. E.; Wynn, T.; Beutner, G. L. J. Am. Chem. Soc. 2002,
124, 13405–13407. (b) Denmark, S. E.; Beutner, G. L.; Wynn, T.; Eastgate, M. D.
J. Am. Chem. Soc. 2005, 127, 3774–3789. (c) Denmark, S. E.; Fujimori, S. In
Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH: Weinheim, 2004, Vol.
2, Chapter 7, pp 229-326.
(9) (a) Power, P. P. Chem. Rev. 1999, 99, 3463–3503. (b) Power, P. P. In
Struct. Bonding (Berlin); Roesky, H. W., Atwood, D. A., Eds.; Springer-Verlag:
Berlin, 2002; Vol. 103, pp 57-84. (c) Fischer, R. C.; Power, P. P. Chem. Rev.
2010, 110, 3877–3923. (c) Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Chem. Rev.
2009, 109, 3479–3511.
L3SiCl2 (1c). SiCl4 (0.82 mL, 7.12 mmol) was added to 100 mL
0
of a diethyl ether solution of L3 Li (2.82 g, 7.12 mmol) at -78 °C,
and then the reaction mixture was allowed to warm to room tem-
perature. After overnight stirring the LiCl formed was filtered off.
Removal of all volatiles from the filtrate resulted in a white solid.
Recrystallization from toluene (20 mL) afforded compound 1c as
colorless crystals (2.14 g, 72%). Anal. Calcd. for C18H29Cl2N5Si
(M = 414.45): C, 52.16; H, 7.05; N, 16.90. Found (%): C, 52.19; H,
7.08; N, 16.83. 1H NMR (200 MHz, C6D6, 298 K): δ 1.06 (d, J =
6.7 Hz, 6H, CHMe2), 1.30 (d, J = 6.7 Hz, 6H, CHMe2), 2.24
(s, 6H, NMe2), 2.94 (s, 3H, NMe2), 2.97 (s, 3H, NMe2), 3.27 (m,
2H, CHMe2), 6.98-7.05 (m, 3H, C6H3) ppm. 13C{1H} NMR
(75 MHz, C6D6, 298 K): δ 23.61 (CHMe2), 25.78 (CHMe2), 28.46
(CHMe2), 37.01, 37.07, 39.50 (NMe2), 125.10, 127.96, 137.42
(C6H3), 146.57 (ipso-C6H3), 161.66, 162.31 (NCN) ppm. 29Si
NMR (59 MHz, C6D6, 298 K): δ -30.57 ppm.
L1SiF3 (2a). THF (50 mL) was added to 1a (1.75 g, 4.87 mmol)
and Me3SnF (2.68 g, 16.66 mmol) in a Schlenk flask at room
temperature. Stirring of the reaction mixture for 20 min resulted in
the dissolution of Me3SnF and the formation of a colorless solu-
tion. After further stirring for 2 h, all volatiles were removed under
vacuum to obtain a white solid. Recrystallization from toluene
(20 mL) at -35 °C afforded 2a (1.13 g, 75%) as colorless crystals
after 20 h. Anal. Calcd (%) for C15H23F3N2Si (M = 316.44): C,
56.93; H, 7.33; N, 8.85. Found (%): C, 56.79; H, 7.30; N, 8.72. 1H
NMR (200 MHz, C6D6, 298 K): δ 1.05 (s, 18H, CMe3), 6.70-6.88
(m, 5H, C6H5) ppm. 13C{1H} NMR (125 MHz, THF-d8, 298 K): δ
31.44 (CMe3), 54.52 (CMe3), 128.31, 128.97, 129.11, 129.20,
(10) (a) Jones, C. Coord. Chem. Rev. 2010, 254, 1273–1289. (b) Power, P. P.
Nature 2010, 463, 171–177. (c) Haaf, M.; Schmedake, T. A.; West, R. Acc.
Chem. Res. 2000, 33, 704–714. (d) Mandal, S. K.; Roesky, H. W. Chem.
Commun. 2010, 46, 6016–6041.
(11) Zhou, M.; Song, Y.; Gong, T.; Tong, H.; Guo, J.; Weng, L.; Liu, D.
Inorg. Chem. 2008, 47, 6692–6700.