5 C. C. Lee, E. R. Gillies, M. E. Fox, S. J. Guillaudeu, J. M. J. Frechet,
E. E. Dy and F. C. Szoka, Proc. Natl. Acad. Sci. U. S. A., 2006, 103,
16649–16654.
6 K. T. Oh, H. Q. Yin, E. S. Lee and Y. H. Bae, J. Mater. Chem., 2007,
17, 3987–4001.
35 J. Yang, I. Gitlin, V. M. Krishnamurthy, J. A. Vazquez, C. E.
Costello and G. M. Whitesides, J. Am. Chem. Soc., 2003, 125, 12392–
12393.
36 Compound 2 represents a mixture of isomers, since there are multiple
lysine residues present in HSA.
7 V. F. Patel, J. N. Hardin, J. M. Mastro, K. L. Law, J. L. Zimmermann,
W. J. Ehlhardt, J. M. Woodland and J. J. Starling, Bioconjugate Chem.,
1996, 7, 497–510.
8 W. C. Shen and H. J. P. Ryser, Biochem. Biophys. Res. Commun., 1981,
102, 1048–1054.
9 M. Guo, Y. Yan, H. Zhang, H. Yan, Y. Cao, K. Liu, S. Wan, J. Huang
and W. Yue, J. Mater. Chem., 2008, 18, 5104–5112.
10 H. Yin and Y. H. Bae, Eur. J. Pharm. Biopharm., 2009, 71, 223–230.
11 A. Bajaj, B. Samanta, H. Yan, D. J. Jerry and V. M. Rotello, J. Mater.
Chem., 2009, 19, 6328–6331.
12 A. Malugin, P. Kopeckova and J. Kopecek, J. Controlled Release, 2007,
124, 6–10.
37 V. Vichai and K. Kirtikara, Nat. Protoc., 2006, 1, 1112–1116.
38 P. A. Andrews, M. P. Murphy and S. B. Howell, Cancer Res., 1985, 45,
6250–6253.
39 The IC50 values were determined after incubation of cells with HSA or
doxorubicin conjugates for 3 days. This incubation time was chosen so
that the pH-sensitive NEBI group could hydrolyze to an appreciable
extent during these cytotoxicity studies (i.e., more than one half-life
according to the data in Fig. 2).
40 The IC50 value for compound 6 (5.8 mM) in ovarian carcinoma 2008
cells is different than the IC50 value that was previously reported in ref.
27. We attribute the variation in these values to: (1) the experimental
differences between the previously used colony formation assay and
the SRB viability assay used here, and (2) to difference in the time of
exposure of compound 6 to cells.
13 G. J. Tong, S. C. Hsiao, Z. M. Carrico and M. B. Francis, J. Am. Chem.
Soc., 2009, 131, 11174–11178.
14 E. R. Gillies and J. M. J. Frechet, Chem. Commun., 2003, 1640–1641.
15 R. E. Kohman and S. C. Zimmerman, Chem. Commun., 2009, 794–796.
16 E. M. Bachelder, T. T. Beaudette, K. E. Broaders, J. Dashe and J. M. J.
Frechet, J. Am. Chem. Soc., 2008, 130, 10494–10495.
17 W. M. Choi, P. Kopeckova, T. Minko and J. Kopecek, J. Bioact. Compat.
Pol., 1999, 14, 447–456.
18 T. Etrych, M. Jelinkova, B. Rihova and K. Ulbrich, J. Controlled
Release, 2001, 73, 89–102.
19 R. S. Greenfield, T. Kaneko, A. Daues, M. A. Edson, K. A. Fitzgerald,
L. J. Olech, J. A. Grattan, G. L. Spitalny and G. R. Braslawsky, Cancer
Res., 1990, 50, 6600–6607.
20 J. Hongrapipat, P. Kopeckova, J. Liu, S. Prakongpan and J. Kopecek,
Mol. Pharmaceutics, 2008, 5, 696–709.
21 S. E. Paramonov, E. M. Bachelder, T. T. Beaudette, S. M. Standley,
C. C. Lee, J. Dashe and J. M. J. Frechet, Bioconjugate Chem., 2008, 19,
911–919.
41 The IC50 of native doxorubicin is 8.3 nM using the same cell viability
assay.
42 We hypothesize that the observed, weak toxicity of 4 arises from the
natural degradation of HSA in the lysosomes, which results in the
release of a small amount of some active derivatives of doxorubicin in
the cell over the course of the 3 day incubation.
43 We chose a 3 h incubation time for the uptake studies because we
required high concentrations (20 mM) of 3 and 6 in these experiments
to clearly observe the fluorescence of the doxorubicin conjugates in the
cells. Longer incubation times leads to substantial death of cells, which
significantly lowers the density of cells within the field of view in the
deconvolution microscope.
44 D. J. Taatjes, G. Gaudiano, K. Resing and T. H. Koch, J. Med. Chem.,
1996, 39, 4135–4138.
45 D. J. Taatjes, G. Gaudiano, K. Resing and T. H. Koch, J. Med. Chem.,
1997, 40, 1276–1286.
22 X. Shi, S. H. Wang, M. Shen, M. E. Antwerp, X. Chen, C. Li, E. J.
Petersen, Q. Huang, W. J. Weber and J. R. Baker, Biomacromolecules,
2009, 10, 1744–1750.
23 M. M. Stevens, S. Allen, M. C. Davies, C. J. Roberts, J. K. Sakata,
S. J. B. Tendler, D. A. Tirrell and P. M. Williams, Biomacromolecules,
2005, 6, 1266–1271.
24 P. A. Wender, E. A. Goun, L. R. Jones, T. H. Pillow, J. B. Rothbard, R.
Shinde and C. H. Contag, Proc. Natl. Acad. Sci. U. S. A., 2007, 104,
10340–10345.
25 P. R. Hamann, L. M. Hinman, I. Hollander, C. F. Beyer, D. Lindh,
R. Holcomb, W. Hallett, H.-R. Tsou, J. Upeslacis, D. Shochat, A.
Mountain, D. A. Flowers and I. Bernstein, Bioconjugate Chem., 2002,
13, 47–58.
26 P. D. Senter, Curr. Opin. Chem. Biol., 2009, 13, 235–244.
27 S. D. Kong, A. Luong, G. Manorek, S. B. Howell and J. Yang,
Bioconjugate Chem., 2007, 18, 293–296.
28 M. K. Dhaon, R. K. Olsen and K. Ramasamy, J. Org. Chem., 1982,
47, 1962–1965.
29 I. M. Shiina and Ryo, Heterocycles, 2008, 76, 1313–1328.
30 T. R. Chan, R. Hilgraf, K. B. Sharpless and V. V. Fokin, Org. Lett.,
2004, 6, 2853–2855.
31 A. E. Speers and B. F. Cravatt, Chem. Biol., 2004, 11, 535–546.
32 C. Carvalho, R. X. Santos, S. Cardoso, S. Correia, P. J. Oliveira, M. S.
Santos and P. I. Moreira, Curr. Med. Chem., 2009, 16, 3267–3285.
33 V. Tuan Giam Chuang, U. Kragh-Hansen and M. Otagiri, Pharm. Res.,
2002, 19, 569–577.
46 Since benzaldehyde has been reported to have potential adverse effects
in cells at millimolar concentrations (A. Ishida, N. Miwa and S.
Mizuno, Cancer Res., 1983, 43, 4216–4220), we investigated whether the
benzaldehyde functionality attached to doxorubicin in 6 could account
for the observed toxicity of 3. We found that a 50 mM concentration of
4-carboxybenzaldehyde was not toxic to the ovarian carcinoma 2008
cells (see Fig. S2 in the ESI†), suggesting that the putative formation of
a benzaldehyde functionality after intracellular hydrolysis of the NEBI
group in 3 was likely not by itself responsible for the observed toxicity of
conjugate 3 at the concentrations used for the cell viability experiments.
47 The rate of hydrolysis of compound 7 in the absence of any additive was
previously estimated in ref. 27 to be 0.028 h-1by 1H NMR in buffered
D2O (pD 7.4). To obtain the values for relative rates shown in Table 1, we
monitored the change in UV absorption upon hydrolysis of compound
7 in buffered H2O (pH 7.4) in the presence of various additives.
The small difference in the estimated value of the rate constants of
compound 7 (here, 0.021 h-1in the absence of any additive) compared
to the previous estimate by NMR may reflect differences between these
two analytical methods.
48 G. V. Iyengar, W. E. Kollmer and H. J. M. Bowen, The Elemental
Composition of Human Tissue and Bodily Fluids, Verlag Chemie, New
York, 1978.
49 R. C. Larock, Comprehensive Organic Transformations, John Wiley &
Sons, 1999.
50 D. Yu, P. Peng, S. S. Dharap, Y. Wang, M. Mehlig, P. Chandna, H.
Zhao, D. Filpula, K. Yang, V. Borowski, G. Borchard, Z. Zhang and
T. Minko, J. Controlled Release, 2005, 110, 90–102.
51 Z. Xie, H. Guan, X. Chen, C. Lu, L. Chen, X. Hu, Q. Shi and X. Jing,
J. Controlled Release, 2007, 117, 210–216.
34 N. Desai, V. Trieu, Z. W. Yao, L. Louie, S. Ci, A. Yang, C. L. Tao, T.
De, B. Beals, D. Dykes, P. Noker, R. Yao, E. Labao, M. Hawkins and
P. Soon-Shiong, Clin. Cancer Res., 2006, 12, 1317–1324.
This journal is
The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 5105–5109 | 5109
©