S. Lee et al. / Bioorg. Med. Chem. Lett. 20 (2010) 7102–7105
7105
with DAPI revealed increased cell survivals by 1 or 10 after 48 h of
serum deprivation. TUNEL assay specifically detecting DNA frag-
mentation also revealed that analogues 1 and 10 suppressed the
apoptotic cell death induced by serum deprivation in a dose-
dependent manner (Figs. 4 and 5).
In conclusion, we identified a series of potent anti-apoptotic
agents derived from easily accessible cholesterol. In particular,
analogues 1 and 10 possessing the cholesterol scaffold and the cyc-
lic carbohydrate equivalents exhibited excellent cell survival activ-
ities, which are equipotent to that of ginsenoside Rk1. In addition,
these analogues exhibited dose-dependent cell viability on HREC
line. The excellent human endothelial cell protective activities of
our novel Rk1-based anti-apoptotic agents envisage its valuable
application for treatment of vascular disorders. Currently, system-
atic studies on their therapeutic applications including in vivo test
of the potent cholesterol analogs as well as their mechanistic as-
pects are in good progress.
Acknowledgement
This work is supported by a grant from the Korea Health 21 R&D
Project, Ministry of Health Welfare & Family Affairs (A085136),
Korea.
References and notes
1. (a) Xu, G.; Shi, Y. Cell Res. 2007, 17, 759–771; (b) Guo, M.; Hay, B. Curr. Opin. Cell
Biol. 1999, 11, 745–752.
Figure 4. Changes in nuclear morphology accessed by DAPI staining (A) Cells
treated with 1 of various concentrations for 48 h. (B) Cells treated with 10 of various
concentrations for 48 h.
2. (a) Rinkenberger, J.; Korsmeyer, S. Curr. Opin. Genet. Dev. 1997, 7, 589–596; (b)
Danial, N.; Korsmeyer, S. Cell 2004, 116, 205–219; (c) Vermeulen, K.; Van
Bockstaele, D.; Berneman, Z. Ann. Hematol. 2005, 84, 627–639; (d) Granville, D.;
Jiang, H.; An, M.; Levy, J.; McManus, B.; Hunt, D. Br. J. Cancer 1999, 79, 95–100;
(e) Park, H.-J.; Lyons, J.; Ohtsubo, T.; Song, C.-W. Br. J. Cancer 1999, 80, 1892–
1897.
3. (a) Winn, R.; Harlan, J. J. Thromb. Haemost. 2005, 3, 1815–1824; (b) Mahoney, J.;
Rosen, A. Curr. Opin. Immunol. 2005, 17, 583–588.
4. (a) Hotchkiss, R.; Nicholson, D. Nat. Rev. Immunol. 2006, 6, 813–822; (b)
Oberholzer, C.; Oberholzer, A.; Clare-Salzler, M.; Moldawer, L. FASEB J. 2001, 15,
879–892.
5. (a) Ekshyyan, O.; Aw, T. Y. Curr. Neurovasc. Res. 2004, 1, 355–371; (b) Mattson,
M. Nat. Rev. Mol. Cell Biol. 2000, 2, 120–129.
6. (a) Libby, P. Nature 2002, 420, 868–874; (b) Weis, S.; Cheresh, D. Nature 2005,
437, 497–504.
7. (a) Kam, P.; Ferch, N. Anaesthesia 2000, 55, 1081–1093; (b) Tricot, O.; Mallat, Z.;
Heymes, C.; Belmin, J.; Leseche, G.; Tedgui, A. Circulation 2000, 101, 2450–2453;
(c) Segura, A.; Serrano, G.; Gonzalez, M.; Abad, C.; Claveria, L.; Gomez, A.;
Bernad, C.; Martinez, H.; Riese, H. FASEB J. 2002, 16, 833–841; (d) Chavakis, E.;
Dimmeler, S. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 887–893; (e) Hunt, B. J.
Lupus 2000, 9, 189–193; (f) Choy, J.; Granville, D.; Hunt, D. J. Mol. Cell. Cardiol.
2001, 33, 1673–1690; (g) Rössig, L.; Haendeler, J.; Mallat, Z. J. Am. Coll. Cardiol.
2000, 36, 2081–2089; (h) Walsh, K.; Smith, R. C.; Kim, H. S. Circ. Res. 2000, 87,
184–188; (i) Dimmeler, S.; Zeiher, A. M. Circ. Res. 2000, 87, 434–439; (j) Libby,
P.; Ridker, P. M.; Maseri, A. Circulation 2002, 105, 1135–1143.
8. (a) Yue, P.; Wong, D.; Wu, P.; Leung, P.; Mak, N.; Yeung, H.; Liu, L.; Cai, Z.; Jiang,
Z.-H.; Fan, T.; Wong, R. Biochem. Pharmacol. 2006, 72, 437–445; (b) Cheng, L.-Q.;
Na, J.; Bang, M.-H.; Kim, M.-K.; Yang, D.-C. Phytochemistry 2008, 69, 218–224;
(c) Tian, J.; Fu, F.; Geng, M.; Jiang, Y.; Yang, J.; Jiang, W.; Wang, C.; Liu, K.
Neurosci. Lett. 2005, 374, 92–97.
9. Min, J.-K.; Kim, J.-H.; Cho, Y.-L.; Maeng, Y.-S.; Lee, S.-J.; Pyun, B.-J.; Kim, Y.-M.;
Park, J.-H.; Kwon, Y.-G. Biochem. Biophys. Res. Commun. 2006, 349, 987–994.
10. The detailed results will be reported in due courses.
11. (a) Shibata, S.; Ando, T.; Tanaka, O. Chem. Pharm. Bull. 1966, 14, 1157–1161; (b)
Han, B. H.; Park, M. H.; Han, Y. N.; Woo, L. K.; Sankawa, U.; Yahara, S.; Tanaka,
O. Planta Med. 1982, 44, 146–149; (c) Yuan, C.-S.; Wu, J. Am. J. Clin. Nutr. 2002,
75, 600–601.
12. (a) Kim, J.-H.; Hong, Y.-H.; Lee, J.-H.; Kim, D.-H.; Nam, G.; Jeong, S. M.; Lee, B.-
H.; Lee, S.-M.; Nah, S.-Y. Mol. Cells 2005, 19, 137–142; (b) Lei, J.; Li, X.; Gong, X.-
J.; Zheng, Y.-N. Molecules 2007, 12, 2140–2150; (c) Danieli, B.; Falcone, L.;
Monti, D.; Riva, S.; Gebhardt, S.; Schubert-Zsilavecz, M. J. Org. Chem. 2001, 66,
262–269.
13. The preliminary studies on ginsenoside Rk1 exhibited its potent anti-apoptotic
activity on HUVECs, which is more potent than ginesoside Rg3. Manuscript is
in preparation for publication.
Figure 5. TUNEL assays at various concentrations of 1 and 10. (A) Cells treated with
1
of various concentrations for 48 h. (B) Cells treated with 10 of various
concentrations for 48 h.
40-6-diamino-2-phenylindole (DAPI) staining and TUNEL assay. In
consistent with the MTT assay results, the nuclear staining of HECs
14. Li, C.; Yu, B.; Liu, M.; Hui, Y. Carbohydrate Res. 1998, 306, 189–195.