6558
K. Namba et al. / Tetrahedron Letters 51 (2010) 6557–6559
O
tetramethyl guanidine in acetonitrile at room temperature to give
Boc
N
exclusively, the 1,2-anti product. Reduction of the ketone gave diol
11 which was subjected to extensive 1H NMR NOE experiments to
secure the relative stereochemistry of this substance. The relative
stereochemistry of the vicinal hydroxymethyl and nitromethyl
substituents in 11 are set with the correct relative stereochemistry
as per the newly reassigned stereochemistry of palau’amine.
Cyclopentane 11 embodies the stereochemistry and relevant
functionality to constitute a viable intermediate for the asymmet-
ric synthesis of palau’amine and congeners. Efforts to complete an
asymmetric total synthesis of palau’amine from cyclopentane 11
are currently under investigation in these laboratories.
Cl
O
O
Boc
N
Ph
Ph
TFA
NaHMDS
Ph
Ph
CH2Cl2
rt, 2 h
THF
O
O
O
°
-78 C, 1h
2
1
O
H
(CHO)n
Ph
N
O
N
O
Ph
Ph
dioxane
Δ, 4 h
O
Ph
O
O
68% (3 steps)
3
A
1. H2, PdCl2
LiAlH4, THF
N
Acknowledgments
Ph
Ph
N
2. Boc2O
Δ, 2h
Ph
HO
OH
OH
O
O
61% (3 steps)
O
We are grateful to the National Institutes of Health (GM068011)
for financial support. We also acknowledge fellowship support
from the JSPS (to K.N.) and the Uehara Foundation (to M.I.).
Ph
N
5
4
IBX, NMO
RuCl3, NaIO4
O
t-BocN
DMSO
rt, 24 h
80%
MeCN, CCl4
H2O, rt, 18 h
81%
Supplementary data
OH
Ot-Boc
O
Boc
OBoc
Supplementary data (complete experimental details and spec-
troscopic characterization of all new compounds) associated with
this article can be found, in the online version, at doi:10.1016/
7
6
aq HCHO
n-Bu3P
OH
LiOH
O
O
N
Boc
N
Boc
THF, rt, 6 h
MeOH, rt, 0.5 h
75% (2 steps)
O
O
OBoc
OBoc
8
9
References and notes
MeOOC
BocHN
MeOOC
NO2
OH
1. (a) Kinnel, R. B.; Gehrken, H.-P.; Scheuer, P. J. J. Am. Chem. Soc. 1993, 115, 3376–
3377; (b) Kinnel, R. B.; Gehrken, H.-P.; Swali, R.; Skoropowski, G.; Scheuer, P. J.
J. Org. Chem. 1998, 63, 3281–3286.
1. MeNO2, TMG
OH
2. (a) Overman, L. E.; Rogers, B. N.; Tellew, J. E.; Trenkle, W. C. J. Am. Chem. Soc.
1997, 119, 7159–7160; (b) Starr, J. T.; Koch, G.; Carreira, E. M. J. Am. Chem. Soc.
2000, 122, 8793–8794; (c) Dilley, A. S.; Romo, D. Org. Lett. 2001, 3, 1535–1538;
(d) Lovely, C. J.; Du, H.; Dias, H. V. R. Org. Lett. 2001, 3, 1319–1322; (e) Jacquot,
D. E. N.; Hoffmann, H.; Polborn, K.; Lindel, T. Tetrahedron Lett. 2002, 43, 3699–
3702; (f) Poullennec, K. G.; Kelly, A. T.; Romo, D. Org. Lett. 2002, 4, 2645–2648;
(g) Belanger, G.; Hong, F. T.; Overman, L. E.; Rogers, B. N.; Tellew, J. E.; Trenkle,
W. C. J. Org. Chem. 2002, 67, 7880–7883; (h) Koenig, S. G.; Miller, S. M.; Leonard,
K. A.; Lowe, R. S.; Chen, B. C.; Austin, D. J. Org. Lett. 2003, 5, 2203–2206; (i) He,
Y.; Chen, Y.; Wu, H.; Lovely, C. J. Org. Lett. 2003, 5, 3623–3626; (j) Poullennec, K.
G.; Romo, D. J. Am. Chem. Soc. 2003, 125, 6344–6345; (k) Katz, J. D.; Overman, L.
E. Tetrahedron 2004, 60, 9559–9568; (l) Lovely, C. J.; Du, H.; He, Y.; Dias, H. V. R.
Org. Lett. 2004, 6, 735–738; (m) Garrido-Hernandez, H.; Nakadai, M.;
Vimolratana, M.; Li, Q.; Doundoulakis, T.; Harran, P. G. Angew. Chem., Int. Ed.
2005, 44, 765–769; (n) Dransfield, P. J.; Wang, S.; Dilley, A.; Romo, D. Org. Lett.
2005, 7, 1679–1682; (o) Jacquot, D. E. N.; Lindel, T. Curr. Org. Chem. 2005, 9,
1551–1565; (p) Dransfield, P. J.; Dilley, A. S.; Wang, S.; Romo, D. Tetrahedron
2006, 62, 5223–5247; (q) Wang, S.; Dilley, A. S.; Poullennec, K. G.; Romo, D.
Tetrahedron 2006, 62, 7155–7161; (r) Gergely, J.; Morgan, J. B.; Overman, L. E. J.
Org. Chem. 2006, 71, 9144–9152; (s) Nakadai, M.; Harran, P. G. Tetrahedron Lett.
2006, 47, 3933–3935; (t) Schroif-Gregoire, C.; Travert, N.; Zaparucha, A.; Al-
Mourabit, A. Org. Lett. 2006, 8, 2961–2964; (u) Tan, X.; Chen, C. Angew. Chem.,
Int. Ed. 2006, 45, 4345–4348; (v) Lanman, B. A.; Overman, L. E. Heterocycles
2006, 70, 557–570; (w) Du, H.; He, Y.; Sivappa, R.; Lovely, C. J. Synlett 2006,
965–992; (x) Sivappa, R.; Hernandez, N. M.; He, Y.; Lovely, C. J. Org. Lett. 2007,
9, 3861–3864; (y) Tang, L.; Romo, D. Heterocycles 2007, 74, 999–1008; (z)
Lanman, B. A.; Overman, L. E.; Paulini, R.; White, N. S. J. Am. Chem. Soc. 2007,
129, 12896–12900; (aa) Cernak, T. A.; Gleason, L. J. Org. Chem. 2008, 73, 102–
110; (ab) Wang, S.; Romo, D. Angew. Chem., Int. Ed. 2008, 47, 1284–1286; (ac)
Bultman, M. S.; Ma, J.; Gin, D. Y. Angew. Chem., Int. Ed. 2008, 47, 6821–6824;
(ad) Zancanella, M. A.; Romo, D. Org. Lett. 2008, 10, 3685–3688; (af) Hudon, J.;
Cernak, T. A.; Ashenhurst, J. A.; Gleason, J. L. Angew. Chem., Int. Ed. 2008, 47,
8885–8888; (ag) Namba, K.; Kaihara, Y.; Yamamoto, H.; Imagawa, H.; Tanino,
K.; Williams, R. M.; Nishizawa, M. Chem. Eur. J. 2009, 15, 6560–6563; (ah) Li, Q.;
Hurley, P.; Ding, H.; Roberts, A. G.; Akella, R.; Harran, P. G. J. Org. Chem. 2009, 74,
5909–5919; (ai) Sivappa, R.; Mukherjee, S.; Dias, H. V. R.; Lovely, C. J. Org.
Biomol. Chem. 2009, 7, 3215–3218; (aj) Feldman, K. S.; Nuriya, A. Y. Org. Lett.
2010, 12, 4532–4535; (ak) Ma, Z.; Lu, J.; Wang, X.; Chen, C., J. Chem. Soc. Chem.
Comm. 2011, in press.; (al) for references to Ph.D. theses describing synthetic
approaches to palau’amine, please see Ref. 3.
MeCN, rt, 6 h
2. NaBH4, THF
MeOH, rt, 1 h
92% (2 steps)
BocHN
O
OH
OBoc
OBoc
11
10
Scheme 1. Asymmetric synthesis of cyclopentane 11.
We have devised an efficient, stereocontrolled entry to the
highly functionalized cyclopentane core of palau’amine by an
asymmetric intramolecular azomethine ylide dipolar cycloaddi-
tion10,11 as the key step and report these preliminary studies here-
in (Scheme 1).
Our synthesis commences with the enolate acylation of com-
mercially available oxazinone 111 to provide 2 (relative stereo-
chemistry unassigned and inconsequential). Removal of the t-Boc
group furnishes aminoketone 3 which was condensed with formal-
dehyde to generate the incipient azomethine ylid (A) that pro-
duced tricyclic intramolecular cycloaddition product 4 as a single
diastereomer in 63% overall yield for the three steps. The intrinsic
facial bias of this intramolecular cycloaddition remains unclear and
constitutes the subject of ongoing studies.
This substance was reduced with LiAlH4 to triol 5, followed by
catalytic hydrogenation and t-Boc-protection to give 6 in 61% over-
all yield from 4. Ruthenium-mediated oxidation cleanly afforded
ketoamide 7 in 81% yield that was converted into the unsaturated
ketone by exposure to IBX and N-methylmorpholine N-oxide in
DMSO delivering enone 8 in 80% yield.12
Stereoselective installation of the two one-carbon arms to en-
one 8 was accomplished in two stages beginning with a Morita–
Baylis–Hillman type of hydroxymethylation that deployed aque-
ous formaldehyde and tri-N-butyl phosphine providing 9 in good
yield.13 Methanolic lithium hydroxide treatment of 9 gave the
monocyclic methyl ester 10 in 75% overall yield from 9. For the
second stage, enone 10 was then treated with nitromethane and
3. Seiple, I. B.; Su, S.; Young, I. S.; Lewis, C. A.; Yamaguchi, J.; Baran, P. S. Angew.
Chem., Int. Ed. 2010, 49, 1095–1098.
4. Buchanan, M. S.; Carroll, A. R.; Addepalli, R.; Avery, V. M.; Hooper, J. N. A.;
Quinn, R. J. J. Org. Chem. 2007, 72, 2309–2317.
5. Grube, A.; Köck, M. Angew. Chem., Int. Ed. 2007, 46, 2320–2324.