6380
A. R. Kapdi et al. / Tetrahedron Letters 51 (2010) 6378–6380
Acknowledgements
I.J.S.F. thanks the University of York for a Ph.D. studentship
(A.R.K.) and the Royal Society for funding.
References and notes
1. Nadin, A.; Nicolaou, K. C. Angew. Chem., Int. Ed. 1996, 35, 1622–1656.
2. (a) Bhide, R. S.; Patel, D. V.; Patel, M. M.; Robinson, S. P.; Hunihan, L. W.;
Gordon, E. M. Bioorg. Med. Chem. Lett. 1994, 4, 2107–2112; (b) Clarke, S. Ann.
Rev. Biochem. 1992, 61, 355–386; (c) Schafer, W. R.; Rine, J. Ann. Rev. Genet.
1992, 30, 209–237; (d) Omer, C. A.; Gibbs, J. B. Mol. Microbiol. 1994, 11, 219–
225; (e) Casey, P. J.; Seabra, M. C. J. Biol. Chem. 1996, 271, 5289–5292; (f)
Labadie, G. R.; Viswanathan, R.; Poulter, C. D. J. Org. Chem. 2007, 72, 9291–9297.
3. Selected examples: (a) Tae Kim, G.; Wenz, M.; Park, J.; Hasserodt, J.; Janda, K. D.
Bioorg. Med. Chem. 2002, 10, 1249–1262; (b) Li, J.; Lan, J.; Liu, Z.; Li, Y. J. Nat.
Prod. 1998, 61, 92–95.
4. Fairlamb, I. J. S.; Dickinson, J. M.; Pegg, M. Tetrahedron Lett. 2001, 42, 2205–
2208.
5. (a) Mechelke, M.; Wiemer, D. F. Tetrahedron Lett. 1998, 39, 783–786; (b)
Mechelke, M.; Wiemer, D. F. J. Org. Chem. 1999, 64, 4821–4829.
6. (a) Trost, B. M. Pure Appl. Chem. 1994, 66, 2007–2014; (b) Trost, B. M.; Fullerton,
T. J. J. Am. Chem. Soc. 1973, 95, 292–294.
Scheme 4. Synthesis of farnesyl-substituted compounds.
7. Use of two allylic leaving groups has been well investigated in cyclic systems:
(a) Bäckvall, J. E.; Nordberg, R. E. J. Am. Chem. Soc. 1981, 103, 4959–4960; (b)
Grennberg, H.; Gogoll, A.; Bäckvall, J. E. J. Org. Chem. 1991, 56, 5808–5811; (c)
Hupe, E.; Aranyos, A.; Szabo, K. J.; Bäckvall, J. E. Tetrahedron 1998, 54, 5375–
5384.
8. Paz, J. L.; Rodrigues, J. A. R. J. Braz. Chem. Soc. 2003, 14, 975–981.
9. [Pd0(dba-3,5,30,50-OMe)3] is available commercially through Sigma–Aldrich
(als2o known as [Pd(dm-dba)2]; Cat. No. 65693-3, and is a non-proprietary
material). This Pd0 precursor was found to be superior to Pd0(dba-H)3, see
2
Table 1, entry 3 and footnote c.
10. Fairlamb, I. J. S.; Kapdi, A. K.; Lee, A. F. Org. Lett. 2004, 6, 4435–4438.
11. (a) Fairlamb, I. J. S.; Kapdi, A. R.; Lee, A. F.; McGlacken, G. P.; Weissburger, F.; de
Vries, A. H. M.; van de Vondervoort, L. S. Chem. Eur. J. 2006, 12, 8750–8761; (b)
Fairlamb, I. J. S. Org. Biomol. Chem. 2008, 6, 3645–3656.
12. Representative procedure for allylic substitution: A solution of [Pd02(dba-3,5,30,50-
OMe)3]9 (0.0031 mmol, 0.5 mol %) and phosphine (0.024 mmol, 4 mol%) in THF
(2 mL) at 25 °C was stirred for 10 min under N2. To this was added 8-iodo-3,7-
dimethyl-(2E,6E)-octadien-1-yl acetate (5a) (0.20 g, 0.62 mmol) and the
reaction mixture was allowed to stir for 5 min. In a separate operation, a
solution of phenol (6) (0.62 mmol) in THF (2 mL) was added to NaH (60%
emulsion in oil) (2 equiv, 1.24 mmol) at 0 °C under N2. The resulting solution
was added to the reaction mixture and stirred at 25 °C for the desired time. On
completion, the reaction was quenched with H2O (5 mL) and then extracted
with Et2O (10 mL). The organic layer was separated, dried over MgSO4 and
filtered. Concentration in vacuo gave the desired products as oils. All
compounds were separated by flash chromatography on silica gel using
hexane/EtOAc mixtures as the eluent. Representative data for (2E,6E)-8-(4-
Scheme 5. Macrocyclic ketone 15 formation from Weinreb amide a-14.
To the best of our knowledge Weinreb amides have not been
used to form macrocyclic ketones. We postulated that the aromatic
bromide component of
a-14 could undergo halogen-lithium ex-
change at low temperature and high dilution, followed by an intra-
molecular 1,2-carbonyl addition/elimination sequence with the
suitably disposed vinyl amide motif (Scheme 5). Rather pleasingly,
methoxyphenoxy)-3,7-dimethyl-2,6-octadienyl acetate (a-7). Colourless oil.
the in situ generated aromatic lithium derivative of
a-14 was
1H NMR (400 MHz, CDCl3) 1.69 (s, 3H), 1.71 (s, 3H), 2.04 (s, 3H), 2.08–2.25 (m,
4H), 3.75 (s, 3H), 4.31 (s, 2H), 4.58 (d, 2H, J = 7.1 Hz), 5.35–5.38 (m, 1H), 5.48–
5.51 (m, 1H), 6.75–6.91 (m, 4H); 13C NMR (100 MHz, CDCl3) 16.3, 18.8, 23.4,
28.2, 41.3, 58.0, 63.8, 78.5, 114.2, 116.9, 118.2, 123.5, 134.0, 144.2, 152.4,
156.1, 173.7; LRMS (CI) m/z (rel.%): 336 (M++NH4þ, 20%), 318 (M+, 30), 275
found to undergo macrocyclisation (at ꢁ100 to 25 °C) to afford
15 in 23% yield. In this case, only the 16-membered macrocyclic
product was isolated from the reaction mixture (by flash chroma-
tography on silica gel).
In summary, a convenient protocol for the synthesis of geranyl
and farnesyl derivatives by Pd(0)-mediated allylic substitution,
which proceeds with excellent regio-, stereo- and chemocontrol,
has been developed. In preliminary studies, a macrocyclic ketone 15,
which is, potentially, an advanced intermediate for the synthesis
of likonide B15,16 could be synthesised using a novel macrocyclisa-
(50), 259 (60), 135 (100); HRMS (CI) m/z exact mass calculated for
þ
C
19H26O4+NH4 336.2188; found 336.2177. Selected data for regioisomer,
c
-
7: 1H NMR (400 MHz, CDCl3) 1.69 (s, 3H), 1.73 (s, 3H), 2.04 (s, 3H), 2.08–2.12
(m, 2H), 2.14–2.19 (m, 2H), 3.75 (s, 3H), 4.59 (d, 2H, J = 6.6 Hz), 4.61 (t, 1H,
J = 6.7 Hz), 5.01 (d, 1H, J = 1.3 Hz), 5.02 (d, 1H, J = 1.3 Hz), 5.28–5.31 (m, 1H),
6.72–6.89 (m, 4H).
13. Cane, D. E.; Tsantrizos, Y. S. J. Am. Chem. Soc. 1996, 118, 10037–10040.
14. Rudi, A.; Benayahu, Y.; Kashman, Y. Org. Lett. 2004, 6, 4013–4016.
15. Olson, B. S.; Trauner, D. Synlett 2005, 700–702.
16. Bruder, M.; Moody, C. J. Synlett 2008, 575–577.
tion strategy from a-14.