10.1002/cplu.202000703
ChemPlusChem
FULL PAPER
Glass substrates pre-coated with indium tin oxide (ITO) with a sheet
resistance of 15 Ω per square were thoroughly cleaned in ultrasonic bath
of tetrahydrofuran, detergent, deionized water, acetone and isopropyl
alcohol and treated with plasma for 5 min in sequence. Organic layers
were deposited onto the ITO-coated glass substrates by thermal
evaporation under high vacuum (<5×10–4 Pa). Cathode was patterned
using a shadow mask with an array of 2.0 mm × 2.5 mm openings.
Deposition rates are 1 Å s-1 for organic materials, 0.1 Å s-1 for LiF, and 5 Å
s-1 for Al, respectively. EL spectra and luminance intensities were recorded
by Photo Research PR655. The current density and driving voltage
characteristics were measured by Keithley 2400 simultaneously. External
quantum efficiency was calculated from the current density, luminance,
and EL spectrum, assuming a Lambertian distribution.
Renaud, P. B. Coto, R. D. Costa, S. Gaillard, Adv. Opt. Mater. 2020, 8,
2000260.
[2]
[3]
a) Q. Zhang, H. Kuwabara, W. J. Potscavage, Jr., S. Huang, Y. Hatae,
T. Shibata, C. Adachi, J. Am. Chem. Soc. 2014, 136, 18070-18081; b) S.
Wang, X. Yan, Z. Cheng, H. Zhang, Y. Liu, Y. Wang, Angew. Chem. Int.
Ed. Engl. 2015, 54, 13068-13072; c) C. Li, R. Duan, B. Liang, G. Han, S.
Wang, K. Ye, Y. Liu, Y. Yi, Y. Wang, Angew. Chem. Int. Ed. Engl. 2017,
56, 11525-11529.
a) Y. Zhu, T. Fei, Y. Ma, ChemPlusChem 2016, 81, 73-79; b) Y.
Nishikitani, T. Cho, S. Uchida, S. Nishimura, K. Oyaizu, H. Nishide,
ChemPlusChem 2018, 83, 463-469; c) S. Seo, S. Shitagaki, N. Ohsawa,
H. Inoue, K. Suzuki, H. Nowatari, S. Yamazaki, Jpn. J. Appl. Phys. 2014,
53, 042102; d) B. Liang, Z. Yu, X. Zhuang, J. Wang, J. Wei, K. Ye, Z.
Zhang, Y. Liu, Y. Wang, Chem. Eur. J. 2020, 26, 4410-4418.
H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012,
492, 234-238.
[4]
[5]
Synthesis
a) Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang,
W. Huang, Adv. Mater. 2014, 26, 7931-7958; b) Y. Im, M. Kim, Y. J. Cho,
J.-A. Seo, K. S. Yook, J. Y. Lee, Chem. Mater. 2017, 29, 1946-1963; c)
M. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 165444.
a) E. Matteucci, A. Baschieri, L. Sambri, F. Monti, E. Pavoni, E. Bandini,
N. Armaroli, ChemPlusChem 2019, 84, 1353-1365; b) X. Li, C. Wang, W.
Song, C. Meng, C. Zuo, Y. Xue, W. Y. Lai, W. Huang, ChemPlusChem
2019, 84, 1623-1629; c) M. Caselli, D. Vanossi, M. Buffagni, M. Imperato,
L. Pigani, A. Mucci, F. Parenti, ChemPlusChem 2019, 84, 1314-1323.
a) J. X. Chen, K. Wang, C. J. Zheng, M. Zhang, Y. Z. Shi, S. L. Tao, H.
Lin, W. Liu, W. W. Tao, X. M. Ou, X. H. Zhang, Adv. Sci. 2018, 5,
1800436; b) R. Furue, K. Matsuo, Y. Ashikari, H. Ooka, N. Amanokura,
T. Yasuda, Adv. Opt. Mater. 2018, 6, 1701147; c) S. Wang, Y. Miao, X.
Yan, K. Ye, Y. Wang, J. Mater. Chem. C 2018, 6, 6698-6704; d) J. X.
Chen, W. W. Tao, W. C. Chen, Y. F. Xiao, K. Wang, C. Cao, J. Yu, S. Li,
F. X. Geng, C. Adachi, C. S. Lee, X. H. Zhang, Angew. Chem. Int. Ed.
Engl. 2019, 58, 14660-14665.
Synthesis
of
6,6'-((phenylazanediyl)bis(4,1-phenylene))bis(5-
phenylpyrazine-2,3-dicarbonitrile) (TPA-2DCNPZ)
[6]
[7]
A mixture of intermediates 2 (1.53 g, 3.00 mmol) and diaminomaleonitrile
(0.97 g, 9.00 mmol) were refluxed in 40.0 mL glacial acetic acid for 6 hours.
After the reaction was completed, the reaction mixture was poured into ice
water. After suction filtration, the residue was purified via silica gel column
chromatography using petroleum ether/dichloromethane (1:1; v/v) as an
eluent to give the product TPA-2DCNPZ as a red solid (1.20 g, 61.2%). 1H
NMR (500 MHz, Methylene Chloride-d2) δ 7.64 (dt, J = 7.1, 1.4 Hz, 4H),
7.57 – 7.43 (m, 10H), 7.43 – 7.37 (m, 2H), 7.29 – 7.23 (m, 1H), 7.22 – 7.15
(m, 2H), 7.10 – 7.00 (m, 4H). 13C NMR (126 MHz, Methylene Chloride-d2)
δ 155.00, 154.54, 149.40, 135.81, 131.26, 130.97, 129.90, 129.77, 129.53,
128.98, 128.80, 126.72, 125.75, 122.63, 113.51, 113.44. MS (m/z): 652.76
[M]+ (calcd: 653.21). Anal. Calcd (100%) for C42H23N9: C, 77.17; H, 3.55;
N, 19.28; Found: C, 77.18; H, 3.76; N, 19.12.
[8]
a) J. H. Kim, J. H. Yun, J. Y. Lee, Adv. Opt. Mater. 2018, 6, 1800255; b)
W. Zeng, H. Y. Lai, W. K. Lee, M. Jiao, Y. J. Shiu, C. Zhong, S. Gong, T.
Zhou, G. Xie, M. Sarma, K. T. Wong, C. C. Wu, C. Yang, Adv. Mater.
2018, 30, 1704961; c) J. Xue, Q. Liang, R. Wang, J. Hou, W. Li, Q. Peng,
Z. Shuai, J. Qiao, Adv. Mater. 2019, 31, 1808242; d) Y. L. Zhang, Q. Ran,
Q. Wang, Y. Liu, C. Hanisch, S. Reineke, J. Fan, L. S. Liao, Adv. Mater.
2019, 31, 1902368; e) Y. J. Yu, Y. Hu, S. Y. Yang, W. Luo, Y. Yuan, C.
C. Peng, J. F. Liu, A. Khan, Z. Q. Jiang, L. S. Liao, Angew. Chem. Int.
Ed. Engl. 2020, 59, 21578-21584.
Synthesis
of
3,3'-((phenylazanediyl)bis(4,1-phenylene))bis(2-
phenylquinoxaline-6,7-dicarbonitrile) (TPA-2DCNQ)
The synthetic methods of TPA-2DNCQ were similar with those of TPA-
2DCNPZ using compound 4,5-diaminophthalonitrile (1.42 g, 8.98 mmol)
instead of diaminomaleonitrile. Finally, TPA-2DCNQ was obtained as a red
1
solid (1.74 g, 69.3%). H NMR (500 MHz, Methylene Chloride-d2) δ 8.62
[9]
a) T. Yang, B. Liang, Z. Cheng, C. Li, G. Lu, Y. Wang, J. Phys. Chem. C
2019, 123, 18585-18592; b) T. Yang, Z. Cheng, Z. Li, J. Liang, Y. Xu, C.
Li, Y. Wang, Adv. Funct. Mater. 2020, 30, 2002681.
(d, J = 6.3 Hz, 4H), 7.86 – 7.60 (m, 4H), 7.52 (dd, J = 7.9, 4.4 Hz, 7H), 7.47
(dd, J = 8.3, 6.7 Hz, 4H), 7.40 (t, J = 7.9 Hz, 2H), 7.27 – 7.15 (m, 2H), 7.13
– 7.01 (m, 4H). 13C NMR (126 MHz, Methylene Chloride-d2) δ 157.38,
156.56, 148.89, 141.74, 141.37, 137.87, 136.76, 136.59, 131.33, 130.16,
129.77, 128.44, 126.31, 125.17, 122.64, 115.31, 114.05, 113.59. MS
(m/z): 752.74 [M]+ (calcd: 753.24). Anal. Calcd (100%) for C50H27N9: C,
79.67; H, 3.61; N, 16.72; Found: C, 79.78; H, 3.76; N, 16.88.
[10] a) M. L. Keshtov, M. I. Buzin, P. V. Petrovskii, E. E. Makhaeva, V. S.
Kochurov, D. V. Marochkin, A. R. Khokhlov, Polym.Sci. Ser. B 2011, 53,
257-266; b) X. Liu, M. Li, T. Han, B. Cao, Z. Qiu, Y. Li, Q. Li, Y. Hu, Z.
Liu, J. W. Y. Lam, X. Hu, B. Z. Tang, J. Am. Chem. Soc. 2019, 141,
11259-11268.
[11] S. Wang, Z. Cheng, X. Song, X. Yan, K. Ye, Y. Liu, G. Yang, Y. Wang,
ACS Appl. Mater. Interfaces 2017, 9, 9892-9901.
Acknowledgements
[12] a) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys.
1980, 72, 650-654; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B
Condens. Matter. 1988, 37, 785-789; c) A. D. Becke, J. Chem. Phys.
1993, 98, 5648-5652; d) A. D. Becke, J. Chem. Phys. 1997, 107, 8554-
8560; e) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010,
132, 154104.
This work was partly supported by the Science Foundation of
Jihua Laboratory.
Keywords: luminescence; organic light-emitting diodes; π-
conjugated acceptors; photophysics; thermally activated delayed
fluorescence
[13] a) C. F.-W. LU Tian, 2011, 69, 2393-2406; b) T. Lu, F. Chen, J. Theor.
Comput. Chem. 2012, 11, 163-183; c) T. Lu, F. Chen, J. Comput. Chem.
2012, 33, 580-592.
Reference
[1]
a) Y. Huang, E. L. Hsiang, M. Y. Deng, S. T. Wu, Light-Sci. Appl. 2020,
9, 105; b) H. Shim, K. Sim, F. Ershad, S. Jang, C. Yu, J. Mater. Chem. C
2020, 8, 10719-10731; c) G. U. Mahoro, J. Fernandez-Cestau, J. L.
8
This article is protected by copyright. All rights reserved.