J. S. Yadav et al. / Tetrahedron Letters 54 (2013) 3227–3229
i
3229
epoxidation7 using t-BuOOH,
L
-(+)-diethyl tartrate, and Tið OPrÞ4 to
Uncited references
afford the epoxy alcohol 8 in 90% yield with excellent enantioselec-
tivity (95% ee, determined by chiral HPLC), which was then treated
with TBSOTf and Hunig’s base in order to accomplish the TBS pro-
tected syn-Aldol product 9. Unfortunately, the desired aldol product
9 was obtained only in 15% yield which could be due to the interfer-
ence of the C6–OBn group as has been reported by others.8 Alde-
hyde 9 was reduced using NaBH4 in MeOH to get the desired
stereo-diad 5 in 75% yield (Scheme 2).
Author: Please cite Ref. 16 in the text.
Acknowledgements
A.R. and K.R. thank the UGC and CSIR, New Delhi, for the award
of fellowships.
Unsatisfied with the above result, we adopted
a well
Supplementary data
precedented asymmetric Aldol addition strategy for the synthesis
of stereo-diad 5 via thiazolidinethione ester 10, as we have
reported in our previous synthetic approach to breviasmide.5 TBS
protection of secondary alcohol 10 and subsequent reductive
cleavage of chiral auxiliary furnished primary alcohol 5,9 which
was then converted into the corresponding bromide derivative
11 in 70% yield using triphenylphosphine (TPP) and CBr4 in anhy-
drous acetonitrile.10 The bromo compound 11 was then coupled
with lithiated 1-(tetrahydropyranyloxy)-2-propyne 12 to obtain
propargyl ether 13. Deprotection of THP group of 13 followed by
chemoselective reduction of alkyne moiety with Red-Al gave the
Supplementary data associated with this article can be found, in
References and notes
1. (a) Satake, M.; Bourdelais, A. J.; Van Wagoner, R. M.; Baden, D. G.; Wright, J. L. C.
Org. Lett. 2008, 10, 3465; (b) Bourdelais, A. J.; Jacocks, H. M.; Wright, J. L. C.;
Bigwarfe, P. M., Jr.; Baden, D. G. J. Nat. Prod. 2005, 2, 68.
2. Kuranaga, T.; Shirai, T.; Baden, D. G.; Wright, J. L. C.; Satake, M.; Tachibana, K.
Org. Lett. 2009, 11, 217.
3. (a) Fadeyi, O. O.; Lindsley, C. W. Org. Lett. 2009, 11, 3950; (b) Ghosh, A. K.; Li, J.
Org. Lett. 2009, 11, 4164; (c) Lee, J.; Panek, J. S. Org. Lett. 2009, 11, 4390; (d)
Tsutsumi, R.; Kuranaga, T.; Wright, J. L. C.; Baden, D. G.; Ito, E.; Satake, M.;
Tachibana, K. Tetrahedron 2010, 66, 6775; (e) Smith, A. B., III; Kutsumura, N.;
Potuzak, J. Tetrahedron Lett. 2011, 52, 2117; (f) Herrmann, A. T.; Martinez, S. R.;
Zakarian, A. Org. Lett. 2011, 13, 3636.
4. (a) Yadav, J. S.; Rajender, V.; Gangadhara Rao, Y. Org. Lett. 2010, 12, 348; (b)
Yadav, J. S.; Pratap, T. V.; Rajender, V. J. Org. Chem. 2007, 72, 5882; (c) Yadav, J.
S.; Pattanayak, M. R.; Das, P. P.; Mohapatra, D. K. Org. Lett. 2011, 13, 1710;
Yadav, J. S.; Samad Hossain, S. K.; Madhu, M.; Mohapatra, D. K. J. Org. Chem.
2009, 74, 8822; (d) Yadav, J. S.; Chetia, L. Org. Lett. 2007, 9, 4587; (e) Yadav, J. S.;
Reddy, Ch. S. Org. Lett. 2009, 11, 1705.
5. Sabitha, G.; Nayak, S.; Bhikshapathi, M.; Yadav, J. S. Org. Lett. 2011, 13, 382.
6. (a) Jung, M. E.; D’Amico, D. C. J. Am. Chem. Soc. 1993, 115, 12208; (b) Jung, M. E.;
D’Amico, D. C. J. Am. Chem. Soc. 1997, 119, 12150; (c) Jung, M. E.; Lee, W. S.; Sun,
D. Org. Lett. 1999, 1, 307.
7. (a)Katsuki,T.;Sharpless,K.B.J.Am.Chem.Soc.1980,102,5974;(b)Fuwa,H.;Ebine,
M.; Bourdelais, A. J.; Baden, D. G.; Sasaki, M. J. Am. Chem. Soc. 2006, 128, 16989; (c)
Tsubone, K.;Hashizume, K.;Fuwa, H.;Sasaki, M. TetrahedronLett. 2011, 52, 548.
8. Jung, M. E.; Hoffmann, B.; Rausch, B.; Contreras, J. M. Org. Lett. 2003, 5, 3159.
9. (a) Evans, D. A.; McGee, L. R. Tetrahedron Lett. 1980, 21, 3975; (b) Evans, D. A.;
Taber, T. R. Tetrahedron Lett. 1980, 21, 4675; (c) Crimmins, M. T.; King, B. W.;
Tabet, E. A. J. Am. Chem. Soc. 1997, 119, 7883; (d) Crimmins, M. T.; Chaudhary, K.
Org. Lett. 2000, 2, 775; (e) Narasimhulu, C. P.; Iqbal, J.; Mukkanti, K.; Das, P.
Tetrahedron Lett. 2008, 49, 3185.
10. (a) Hooz, J.; Gilay, S. S. H. Can. J. Chem. 1968, 46, 86; Axelrod, E. H.; Milne, G. M.;
Tamelen, E. E. V. J. Am. Chem. Soc. 1970, 92, 2139; (b) Wanga, D. S.; Chen, C. S.
Bioorg. Med. Chem. 2001, 9, 3165; Vicario, J. L.; Job, A.; Wolberg, M.; Mu1ller,
M.; Enders, D. Org. Lett. 2002, 1023, 4.
11. (a) Denmark, S. E.; Jones, T. K. J. Org. Chem. 1982, 47, 4595; (b) Woehrle, I.;
Classen, A.; Peterek, M.; Scharf, H. D. Tetrahedron Lett. 1996, 37, 7001; (c)
Matsukura, H.; Hori, N.; Matsuo, G.; Nakata, T. Tetrahedron Lett. 2000, 41, 7681;
(d) Nambiar, K. P.; Mitra, A. Tetrahedron Lett. 1994, 35, 3033.
allyl alcohol 14 in 80% yield.11 Sharpless asymmetric epoxidation7
i
of the allyl alcohol 14 using
L
-(+)-diethyl tartrate, Tið OPrÞ4, and t-
BuOOH in anhydrous CH2Cl2 gave the epoxy alcohol 15 in 92%
yield. Dess–Martin periodinane oxidation12 followed by Wittig
olefination13 of the epoxy alcohol 15 gave styrylepoxide 16 in
63% yield with 9:1 E/Z ratio (Scheme 3).
Next we intended to attempt the 6-endo-cyclization of hydroxy
styrylepoxide 4 to access the tetrahydropyran 17. Accordingly,
compound 16 was treated with tetra-n-butylammonium fluoride
(TBAF) in anhydrous THF to provide the hydroxy styrylepoxide 4
in 90% yield. NaH induced 6-endo-cyclization of styryl epoxide 4
(Tadashi Nakata protocol)14 gave the desired tetrahydropyranyl
ether 17 in 90% yield with the requisite stereochemistry. Second-
ary hydroxyl group of tetrahydropyran 17 was protected as its
TBS ether 18 using t-butyldimethylsilyltrifluoromethanesulfonate
(TBSOTf), diisopropylethylamine in CH2Cl2 in 90% yield. Ozonoly-
sis13,15 of olefin 18 followed by the reduction of the resulting alde-
hyde with NaBH4 afforded the primary alcohol 19 in 82% yield.
Next, alcohol 19 was converted3c into the primary azide 20 using
Diisopropyl azodicarboxylate (DIAD), triphenylphosphine (TPP),
and diphenylphosphoryl azide (DPPA), which was then reduced
to the corresponding amine 21 using triphenylphosphine (TPP) in
THF/H2O system.3c Acylation of the primary amine 21 with Ac2O,
TEA in CH2Cl2 gave the desired C1–C15 fragment 3 of (ꢀ)-brevisa-
mide in 75% yield (Scheme 3). This route provided fragment 3 in a
1.35% overall yield in the longest linear sequence of 20 steps from
commercially available starting material. The spectral data and
optical rotation values of this advanced intermediate 3 (C1–C15
fragment) were in agreement with a known compound reported
in the literature.3a,5
12. (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155; (b) Hoppen, S.; Bäurle,
S.; Koert, U. Chem. Eur. J. 2000, 6, 2382; (c) Jung, M. E.; Berliner, J. A.; Koroniak,
L.; Gugiu, B. G.; Watson, A. D. Org. Lett. 2008, 10, 4207.
13. Morimoto, M.; Matsukura, H.; Nakata, T. Tetrahedron Lett. 1996, 37, 6365.
14. (a) Matsukura, H.; Morimoto, M.; Nakata, T. Chem. Lett. 1996, 487; (b)
Matsukura, H.; Morimoto, M.; Koshino, H.; Nakata, T. Tetrahedron Lett. 1997,
38, 5545.
In conclusion, the formal synthesis of (ꢀ)-brevisamide has been
accomplished by constructing the tetrahydropyran core unit (C1–
C15 fragment of brevisamide). The base induced epoxide rear-
rangement strategy has been used to achieve syn-Aldol reaction.
The synthesis involves simple and straightforward reactions such
as the Sharpless asymmetric epoxidation and base induced 6-
endo-cyclization of hydroxy styrylepoxide.
15. (a) Su, J. S.; Murray, R. W. J. Org. Chem. 1980, 45, 678; (b) Anil., K.; Saksena, A.
K. Tetrahedron Lett. 1980, 21, 133; (c) George, J.; Hunseung, O. Tetrahedron
Lett. 1980, 21, 3667; (d) Fuwa, H.; Yamaguchi, H.; Sasaki, M. Org. Lett. 1848,
2010, 12.
16. (a) Parker, K. A.; Iqbal, T. J. Org. Chem. 1987, 52, 4369; (b) Hashimoto, M.;
Kan, T.; Nozaki, K.; Yanagiya, M.; Shirahama, H.; Matsumoto, T. J. Org. Chem.
1990, 55, 5088; (c) Mulzer, J.; Karig, G.; Pojarliev, P. Tetrahedron Lett. 2000,
41, 7635; (d) Davis, J. M.; Truong, A.; Hamilton, A. D. Org. Lett. 2005, 7,
5405; (e) Gaich, T.; Karig, G.; Martin, H. J.; Mulzer, J. Eur. J. Org. Chem. 2006,
15, 3372; (f) Yadav, J. S.; Sreenivas, M.; Reddy, A. S.; Reddy, B. V. S. J. Org.
Chem. 2010, 75, 8307.