P. González-Bulnes et al. / Bioorg. Med. Chem. 18 (2010) 8549–8555
8555
similar trend in xanthate PC-PLCBc inhibitors,32 where the binding
of the compounds to the active site depends on the presence of the
zinc coordinating dithiocarbonate group, with the present hydro-
phobic moiety modulating its inhibitory activity.
3. Watkins, J. B. Pediatrics 1985, 75, 151.
4. Oestvang, J.; Johansen, B. Biochim. Biophys. Acta 2006, 1761, 1309.
5. Triggiani, M.; Granata, F.; Frattini, A.; Marone, G. Biochim. Biophys. Acta 2006,
1761, 1289.
6. Zhang, L.; Zhao, J.; Su, L.; Huang, B.; Wang, L.; Su, H.; Zhang, Y.; Zhang, S.; Miao,
J. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 411.
The increase of the alkyl tether length from two to three carbon
atoms did not result in a substantially higher inhibitory potency.
Compounds from the first and second series exhibited similar
IC50 values. Overall, it seems that inhibitory activity increases with
the lipopholicity of the molecule that can be the result of either a
longer amino acidic alkyl aminohydroxamic functionalities. The
compounds having dimethylamino groups in place of trimethy-
lammonium substituents display inhibitory activities in the same
order of magnitude but systematically less potent than their trime-
thylammonium counterparts. Four compounds, representative of
the different inhibitor types studied, were selected for kinetic stud-
ies and we found that none of them was a pure PC-PLCBc compet-
itive inhibitor. Compound 25 was an uncompetitive inhibitor,
compound 29 turned out to inhibit the enzyme in a non-competi-
tive way and compounds 35 and 39 were mixed inhibitors. The
lack of interaction of the compounds with the active site of the en-
zyme would explain why the zinc coordinating moiety is not
essential for inhibitory activity. This behaviour is different from
that of other PC-PLCBc competitive inhibitors synthesized in our
group, such as alpha-aminohydroxamic acids or xanthathes, where
a low inhibitory potency was found when the zinc coordinating
groups were chemically blocked. Although these results cannot
be generalised to all members of the different chemical families
studied, we think that they are compatible with inhibitor binding
to PC-PLCBc protein sites other than the zinc catalytic centre, a fact
that might be related to the known interfacial activation of this en-
zyme.51 The cytotoxicity exhibited for long chain analogues and
the low inhibitory activity elicited by n-hexylamino acid deriva-
tives, points out to n-decanoyl derivatives as the best candidates
to develop future work on in vivo studies of this new family of
PC-PLC inhibitors.
7. Alberti-Segui, C.; Goeden, K. R.; Higgins, D. E. Cell. Microbiol. 2007, 9, 179.
8. Ghelardi, E.; Celandroni, F.; Salvetti, S.; Fiscarelli, E.; Senesi, S. Microbes Infect.
2007, 9, 591.
9. Becker, K. P.; Hannun, Y. A. Cell. Mol. Life Sci. 2005, 62, 1448.
10. Mateos, M. V.; Uranga, R. M.; Salvador, G. A.; Giusto, N. M. Lipids 2006, 41, 273.
11. Wang, H.; Kazanietz, M. G. Biochem. Soc. Trans. 2006, 34, 855.
12. Bell, R. M. Cell 1986, 45, 631.
13. Exton, J. H. J. Biol. Chem. 1990, 265, 1.
14. Nishizuka, Y. Nature 1988, 334, 661.
15. Singer, S. J.; Nicolson, G. L. Science 1972, 175, 720.
16. Wakelam, M. J. O. Biochim. Biophys. Acta 1998, 1436, 117.
17. Xingzhong, W. U.; Lu, H.; Zhou, L. A. N.; Huang, Y.; Chen, H. Cell Biol. Int. 1997,
21, 375.
18. Iorio, E.; Mezzanzanica, D.; Alberti, P.; Spadaro, F.; Ramoni, C.; D’Ascenzo, S.;
Millimaggi, D.; Pavan, A.; Dolo, V.; Canevari, S.; Podo, F. Cancer Res. 2005, 65,
9369.
19. Plo, I.; Lautier, D.; Levade, T.; Sekouri, H.; Jaffrezou, J. P.; Laurent, G.; Bettaieb, A.
Biochem. J. 2000, 351, 459.
20. Suh, P. G.; Park, J. I.; Manzoli, L.; Cocco, L.; Peak, J. C.; Katan, M.; Fukami, K.;
Kataoka, T.; Yun, S.; Ryu, S. H. BMB Rep. 2008, 41, 415.
21. Clark, M. A.; Shorr, R. G. L.; Bomalaski, J. S. Biochem. Biophys. Res. Commun.
1986, 140, 114.
22. Hansen, S.; Hansen, L. K.; Hough, E. J. Mol. Biol. 1992, 225, 543.
23. Hansen, S.; Hough, E.; Svensson, L. A.; Wong, Y.-L.; Martin, S. F. J. Mol. Biol.
1993, 234, 179.
24. Hough, E.; Hansen, L. K.; Birknes, B.; Jynge, K.; Hansen, S.; Hordvik, A.; Little, C.;
Dodson, E.; Derewenda, Z. Nature 1989, 338, 357.
25. Little, C.; Otnass, A. B. Biochim. Biophys. Acta 1975, 391, 326.
26. Aurebekk, B.; Clive, L. Int. J. Biochem. 1977, 8, 757.
27. Aurebekk, B.; Little, C. Biochem. J. 1977, 161, 159.
28. Little, C. Biochem. J. 1977, 167, 399.
29. Little, C.; Aurebekk, B. Acta Chem. Scand. B 1977, 31, 273.
30. Martin, S. F.; Wong, Y.-L.; Wagman, A. S. J. Org. Chem. 1994, 59, 4821.
31. Benfield, A. P.; Goodey, N. M.; Phillips, L. T.; Martin, S. F. Arch. Biochem. Biophys.
2007, 460, 41.
32. Gonzalez-Roura, A.; Casas, J.; Llebaria, A. Lipids 2002, 37, 401.
33. Kang, M. S.; Jung, S. Y.; Jung, K. M.; Kim, S. K.; Ahn, K. H.; Kim, D. K. Mol. Cells
2008, 26.
34. Lauderback, C. M.; Drake, J.; Zhou, D.; Hackett, J. M.; Castegna, A.; Kanski, J.;
Tsoras, M.; Varadarajan, S.; Butterfield, D. A. Free Radic. Res. 2003, 37, 355.
35. Luberto, C.; Hannun, Y. A. J. Biol. Chem. 1998, 273, 14550.
36. Aakre, S. E.; Little, C. Biochem. J. 1982, 203, 799.
37. Martin, S. F.; Follows, B. C.; Hergenrother, P. J.; Franklin, C. L. J. Org. Chem. 2000,
65, 4509.
4. Experimental
38. Franklin, C. L.; Li, H.; Martin, S. F. J. Org. Chem. 2003, 68, 7298.
39. Roberts, M. F.; Wu, Y.; Zhou, C.; Geng, D.; Tan, C. Adv. Enzyme Regul. 1996, 36,
57.
Detailed experimental procedures and spectral data for the syn-
thesized compounds are provided in Supplementary data.
40. Tan, C. A.; Roberts, M. F. Biochim. Biophys. Acta 1996, 1298, 58.
41. Gonzalez-Roura, A.; Navarro, I.; Delgado, A.; Llebaria, A.; Casas, J. Angew. Chem.,
Int. Ed. 2004, 43, 862.
Acknowledgements
42. Albertson, N. F. J. Am. Chem. Soc. 1946, 68, 450.
43. Madsen, U.; Brauner-Osborne, H.; Frydenvang, K.; Hvene, L.; Johansen, T. N.;
Nielsen, B.; Sanchez, C.; Stensbol, T. B.; Bischoff, F.; Krogsgaard-Larsen, P. J.
Med. Chem. 2001, 44, 1051.
Partial financial support from the ‘Ministerio de Ciencia e Inno-
vación’, Spain (Project CTQ2008-01426/BQU) and ‘Generalitat de
Catalunya’ (Grant 2009SGR-1072) is acknowledged.
44. Mori, K.; Otsuka, T. Tetrahedron 1985, 41, 547.
45. Nikam, S. S.; Komberg, B. E.; Johnson, D. R.; Doherty, A. M. Tetrahedron Lett.
1995, 36, 197.
46. Hergenrother, P. J.; Martin, S. F. Anal. Biochem. 1997, 251, 45.
47. el-Sayed, M. Y.; DeBose, C. D.; Coury, L. A.; Roberts, M. F. Biochim. Biophys. Acta
1985, 837, 325.
48. Martin, S. F.; Hergenrother, P. J. Bioorg. Med. Chem. Lett. 1998, 8, 593.
49. Antikainen, N. M.; Monzingo, A. F.; Franklin, C. L.; Robertus, J. D.; Martin, S. F.
Arch. Biochem. Biophys. 2003, 417, 81.
50. Martin, S. F.; Follows, B. C.; Hergenrother, P. J.; Trotter, B. K. Biochemistry 2000,
39, 3410.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
51. Singh, J.; Ranganathan, R.; Hadju, J. J. Phys. Chem. B 2008, 112, 16741.
52. Martin, S. F.; Hergenrother, P. J. Biochemistry 1999, 38, 4403.
1. Scott, J. A. J. Theor. Biol. 1984, 111, 659.
2. Borgstrom, B. Gastroenterology 1980, 78, 954.