Acrꢀ, supporting a collision model for two diffusive radical
1 (a) V. Balzani, A. Credi and M. Venturi, ChemSusChem, 2008, 1,
26–58; (b) K. B. Yoon, Chem. Rev., 1993, 93, 321–339;
(c) M. R. Wasielevski, Chem. Rev., 1992, 92, 435–461.
2 (a) J. W. Verhoeven, J. Photochem. Photobiol., C, 2006, 7, 40–60;
(b) S. Fukuzumi, Phys. Chem. Chem. Phys., 2008, 10, 2283–2297;
(c) O. Ito and K. Yamanaka, Bull. Chem. Soc. Jpn., 2009, 82,
316–332.
species with the same concentrations (i.e., [Acrꢀ] = [Mesꢀ+]).
+
Thus it is likely that the two radical species Mesꢀ and Acrꢀ
generated by photoexcitation of the Mes–Acr+ unit separately
migrate in the organosilica framework, resulting in a charge
separation state with a microsecond-order lifetime and subse-
quent charge recombination as a second-order process. Weak
electrostatic attractive forces between the cationic (Mesꢀ+) and
neutral (Acrꢀ) species may also play an important role in the
induction of such long-lived charge separation states in this
condensed matter system. Photoinduced charge separation
behavior was also evaluated for a haze-free non-structured
Mes–Acr+–silica film prepared without surfactants by time-
resolved spectroscopic analysis (Fig. 2a, inset), which showed
clear absorption spectral profiles and similar static and dynamic
optical behavior to that of the mesostructured film (see ESIw).
The formation of mesoporous structure in the
Mes–Acr+–silica has a great merit for application to solid
catalyst because reactant molecules can easily access the
charge-separated sites generated on the high-surface area
organosilica framework. Photocatalytic ability of the mesoporous
Mes–Acr+–silica was evaluated in photooxidation reactions,
which were previously reported in homogeneous Mes–Acr+
systems.4d,e Briefly, after extraction of Brij76, the mesostructured
Mes–Acr+–silica hybrid was ground and dispersed in a
dichloromethane solution of benzyl alcohol or triphenyl-
phosphine. After visible light irradiation (xenon lamp,
>385 nm, 12 h) of the suspensions under O2 bubbling,
benzaldehyde or triphenylphosphine oxide, respectively, was
3 S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N. V. Tkachenko
and H. Lemmetyinen, J. Am. Chem. Soc., 2004, 126, 1600–1601.
4 (a) H. Kotani, K. Ohkubo and S. Fukuzumi, J. Am. Chem. Soc.,
2004, 126, 15999–16006; (b) K. Ohkubo, T. Nanjo and
S. Fukuzumi, Org. Lett., 2005, 7, 4265–4268; (c) K. Suga,
K. Ohkubo and S. Fukuzumi, J. Phys. Chem. A, 2005, 109,
10168–10175; (d) K. Ohkubo, K. Suga and S. Fukuzumi, Chem.
Commun., 2006, 2018–2020; (e) K. Ohkubo, T. Nanjo and
S. Fukuzumi, Bull. Chem. Soc. Jpn., 2006, 79, 1489–1500;
(f) K. Ohkubo, K. Mizushima, R. Iwata, K. Souma, N. Suzuki
and S. Fukuzumi, Chem. Commun., 2010, 46, 601–603.
5 (a) A. C. Benniston, A. Harriman, P. Li, J. P. Rostron and
J. W. Verhoeven, Chem. Commun., 2005, 2701–2703;
(b) A. C. Benniston, A. Harriman, P. Li, J. P. Rostron, H. J. van
Ramesdonk, M. M. Groeneveld, H. Zhang and J. W. Verhoeven,
J. Am. Chem. Soc., 2005, 127, 16054–16064; (c) J. W. Verhoeven,
H. J. van Ramesdonk, H. Zhang, M. M. Groeneveld,
A. C. Benniston and A. Harriman, Int. J. Photoenergy, 2005, 7,
103–108; (d) A. G. Griesbeck and M. Cho, Org. Lett., 2007, 9,
611–613.
6 (a) H. Kotani, K. Ohkubo, Y. Takai and S. Fukuzumi, J. Phys.
Chem. B, 2006, 110, 24047–24053; (b) H. Kotani, T. Ono,
K. Ohkubo and S. Fukuzumi, Phys. Chem. Chem. Phys., 2007, 9,
1487–1492; (c) T. Hasobe, S. Hattori, H. Kotani, K. Ohkubo,
K. Hosomizu, H. Imahori, P. V. Kamat and S. Fukuzumi, Org.
Lett., 2004, 6, 3103–3106.
7 (a) F. Hoffmann, M. Cornelius, J. Morell and M. Froba, Angew.
¨
Chem., Int. Ed., 2006, 45, 3216–3251; (b) S. Fujita and S. Inagaki,
Chem. Mater., 2008, 20, 891–908.
8 (a) T. P. Nguyen, P. Hesemann, P. Gaveau and J. J. E. Moreau,
J. Mater. Chem., 2009, 19, 4164–4171; (b) M. Beretta, J. Morell,
1
produced as confirmed by H NMR spectroscopy (see ESIw).
P. Sozzani and M. Froba, Chem. Commun., 2010, 46, 2495–2497.
¨
These results indicate that the photocatalytic ability of the
Mes–Acr+ unit is retained when covalently fixed within the
solid silica matrices. The NMR spectra also confirmed that no
leaching of the Mes–Acr+ unit from the organosilica hybrid
had taken place during reaction.
9 (a) Y. Goto, N. Mizoshita, O. Ohtani, T. Okada, T. Shimada,
T. Tani and S. Inagaki, Chem. Mater., 2008, 20, 4495–4498;
(b) N. Mizoshita, Y. Goto, T. Tani and S. Inagaki, Adv. Funct.
Mater., 2008, 18, 3699–3705; (c) N. Mizoshita, Y. Goto,
M. P. Kapoor, T. Shimada, T. Tani and S. Inagaki, Chem.–Eur.
J., 2009, 15, 219–226; (d) S. Inagaki, O. Ohtani, Y. Goto,
K. Okamoto, M. Ikai, K. Yamanaka, T. Tani and T. Okada,
Angew. Chem., Int. Ed., 2009, 48, 4042–4046; (e) H. Takeda,
Y. Goto, Y. Maegawa, T. Ohsuna, T. Tani, K. Matsumoto,
T. Shimada and S. Inagaki, Chem. Commun., 2009, 6032–6034;
(f) N. Mizoshita, Y. Goto, T. Tani and S. Inagaki, Adv. Mater.,
2009, 21, 4798–4801; (g) N. Mizoshita, M. Ikai, T. Tani and
S. Inagaki, J. Am. Chem. Soc., 2009, 131, 14225–14227;
(h) M. Ohashi, M. Aoki, K. Yamanaka, K. Nakajima,
T. Ohsuna, T. Tani and S. Inagaki, Chem.–Eur. J., 2009, 15,
13041–13046; (i) H. Takeda, M. Ohashi, T. Tani, O. Ishitani and
S. Inagaki, Inorg. Chem., 2010, 49, 4554–4559.
In conclusion, mesostructured organosilica hybrids with a
Mes–Acr+ bridging unit were prepared from a newly designed
organosilane precursor 1 without dilution. Photoinduced
charge separation within the Mes–Acr+–silica hybrid frame-
work was demonstrated over a microsecond time scale. PMOs
containing a high density of photochemically active organic
bridges have great potential for photovoltaic materials and
recyclable photocatalytic systems.
We gratefully acknowledge Prof. Hiroshi Miyasaka of
Osaka University for helpful discussion and comments.
10 (a) S. Z. Qiao, C. X. Lin, Y. Jin, Z. Li, Z. Yan, Z. Hao, Y. Huang
and G. Q. Lu, J. Phys. Chem. C, 2009, 113, 8673–8682;
(b) S. Z. Qiao, C. Z. Yu, Q. H. Hu, Y. G. Jin, X. F. Zhou,
X. S. Zhao and G. Q. Lu, Microporous Mesoporous Mater., 2006,
91, 59–69; (c) S. S. Park, J. H. Shin, D. Zhao and C.-S. Ha,
J. Mater. Chem., 2010, 20, 7854–7858.
Notes and references
z Electron microscopy observation of the mesostructures was difficult
because the organosilica hybrids were rapidly damaged by electron
beam irradiation.
11 Y. Maegawa, Y. Goto, S. Inagaki and T. Shimada, Tetrahedron
Lett., 2006, 47, 6957–6960.
c
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 9235–9237 9237