Solvent Effects on a [2,3]-Wittig Rearrangement
Mechanisms, American Chemical Society, Washington DC,
2003, pp. 119–162; h) R. W. Hoffmann, Stereochemical Aspects
of Organolithium Compounds, Topics in Stereochemistry (Eds.:
R. E. Gawley, J. Siegel), Wiley, New York, 2010, vol. 26, chap-
ter 5.
For reviews on [2,3]-Wittig rearrangements, see: a) T. Nakai,
K. Mikami, Chem. Rev. 1986, 86, 885–902; b) J. A. Marshall,
Comprehensive Organic Synthesis (Eds.: B. M. Trost, I. Flem-
ing), Pergamon, Oxford, 1991, vol. 3, pp. 975–1014; c) K. Mi-
kami, T. Nakai, Synthesis 1991, 594–604; d) T. Nakai, K. To-
mooka, Pure Appl. Chem. 1997, 69, 595–600; e) K. Tomooka,
The Chemistry of Organolithium Compounds, vol. 1 (Eds.: Z.
Rappoport, I. Marek), Wiley, Chichester, 2004, pp. 749–828.
M. Sasaki, H. Ikemoto, M. Kawahata, K. Yamaguchi, K.
Takeda, Chem. Eur. J. 2009, 15, 4663–4666.
bined organic phases were successively washed with water
(2ϫ10 mL) and saturated brine (10 mL), dried, and concentrated.
The residual oil was subjected to column chromatography (silica
gel, 30 g; hexane/AcOEt, 22:1) to give (S)-6a (640 mg, 82%); color-
less oil; Rf = 0.65 (hexane/AcOEt, 3:1); [α]2D8 = 9.04 (c = 1.00,
[2]
CHCl ). IR (film): ν = 3082, 3060, 3025, 2981, 2923, 2857 cm–1.
˜
3
1H NMR (500 MHz, CDCl3, 25 °C): δ = 4.00–4.11 (m, 2 H, 1-HЈЈ),
3
3
4.98 (d, JH,H = 7.3 Hz, 1 H, 1-HЈ), 5.22 (ddd, JH,H = 10.3, 3.0,
3
1.4 Hz, 1 H, 3-HЈЈ), 5.32 (ddd, JH,H = 17.2, 3.2, 1.6 Hz, 1 H, 3-
HЈЈ), 5.93–6.01 (m, 1 H, 2-HЈЈ), 6.25 (dd, JH,H = 16.0, 7.3 Hz, 1
H, 2-HЈ), 6.64 (d, JH,H = 16.0 Hz, 1 H, 3-HЈ), 6.96–7.40 (m, 9 H,
3
3
PhH) ppm. 13C NMR (125 MHz, CDCl3, 25 °C): δ = 69.6, 81.3,
113.8, 114.0 (d, JC,F = 22 Hz), 114.6 (d, JC,F = 21 Hz), 114.8, 117.3,
122.6, 122.6, 126.8, 128.1, 128.8, 129.8, 130.1, 130.2, 132.2, 134.8,
136.6, 144.1, 144.2, 162.3 (d, JC,F = 244.2 Hz) ppm. HRMS: calcd.
for C18H17FO [M – H]+ 267.1180; found 267.1191.
[3]
[4]
D. Y. Curtin, W. J. Koehl Jr., J. Am. Chem. Soc. 1962, 84, 1967–
1973.
[5]
[6]
[7]
[8]
S. Wu, S. Lee, P. Beak, J. Am. Chem. Soc. 1996, 118, 715–721.
A. Carstens, D. Hoppe, Tetrahedron 1994, 50, 6097–6108.
R. E. Gawley, Q. Zhang, Tetrahedron 1994, 50, 6077–6088.
D. C. Kapeller, F. Hammerschmidt, J. Org. Chem. 2009, 74,
2380–2388.
a) R. W. Hoffmann, J. Lanz, R. Metternich, G. Tarara, D.
Hoppe, Angew. Chem. Int. Ed. Engl. 1987, 26, 1145–1146; b)
R. Hirsch, R. W. Hoffmann, Chem. Ber. 1992, 125, 975–982; c)
R. W. Hoffmann, T. Rühl, J. Harbach, Liebigs Ann. Chem.
1992, 725–730; d) R. W. Hoffmann, M. Julius, F. Chemla, T.
Ruhland, G. Frenzen, Tetrahedron 1994, 50, 6049–6060; e) A.
Basu, D. Gallagher, P. Beak, J. Org. Chem. 1996, 61, 5718–
5719; f) P. Beak, A. Basu, D. J. Gallagher, Y. S. Park, S. Thayu-
manavan, Acc. Chem. Res. 1996, 29, 552–560; g) see also ref.[1h]
P. R. Peoples, J. B. Grutzner, J. Am. Chem. Soc. 1980, 102,
4709–4715.
a) E. J. Verner, T. Cohen, J. Am. Chem. Soc. 1992, 114, 375–
377; b) E. J. Verner, T. Cohen, J. Org. Chem. 1992, 57, 1072–
1073; c) R. Hoffmann, R. Brückner, Chem. Ber. 1992, 125,
1957–1963; d) K. Tomooka, T. Igarashi, T. Nakai, Tetrahedron
1994, 50, 5927–5932; e) R. Hoffmann, T. Rückert, R. Brückner,
Tetrahedron Lett. 1993, 34, 297–300; f) H. Schäfer, U.
Schöllkopf, D. Walter, Tetrahedron Lett. 1968, 9, 2809–2814; g)
D. A. Evans, D. J. Baillargeon, Tetrahedron Lett. 1978, 19,
3315–3322; h) U. Azzena, T. Denurra, G. Melloni, A. M. Pir-
oddi, J. Org. Chem. 1990, 55, 5532–5535; i) K. Tomooka, H.
Yamamoto, T. Nakai, J. Am. Chem. Soc. 1996, 118, 3317–3318;
j) K. Tomooka, H. Yamamoto, T. Nakai, Liebigs Ann./Recueil
1997, 1275–1281.
General Procedure for the Hoffmann Test with 8 and 9: To a solution
of benzyltrimethylsilane (114 mg, 0.25 mmol) in anhydrous THF
(750 μL) was added a solution of nBuLi (2.38 m in hexane, 116 μL,
0.275 mmol) at 0 °C. After stirring at the same temperature for
10 min, a solution of (S)-2-(dibenzylamino)-3-phenylpropionalde-
hyde (9; 165 mg, 0.50 mmol) in 1,4-dioxane (7.5 mL) was added by
using a cannula over 2 min. After stirring at 5 °C for 10 min, acetic
acid (1 m in 1,4-dioxane, 0.275 mL) was added dropwise, and the
mixture was diluted with Et2O (5 mL) and 10% aqueous NH4Cl
(5 mL). The phases were separated, and the aqueous phase was
extracted with Et2O (2ϫ5 mL). The combined organic phases were
washed with saturated brine (30 mL), dried, and concentrated. The
residual oil was subjected to column chromatography (silica gel,
30 g; hexane/CH2Cl2, 1:1) to give alkene 10 (88.6 mg, 88%) in an
(E)/(Z) ratio of 48:52. The alkenes were characterized by their
NMR spectra.
[9]
[10]
[11]
For the reaction of 8 with racemic aldehyde 9, the same procedure
was performed as described above.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, spectroscopic data, and copies of 1H
and 13C NMR spectra for all new compounds.
Acknowledgments
[12]
Compound [D2]-4 was prepared by treatment of (E)-1,3-di-
phenylprop-2-en-1-ol with hydrochloric acid in [1,1-D2]allyl
alcohol. For the preparation of [1,1-D2]allyl alcohol, see: M.
Solomon, W. Hoekstra, G. Zima, D. Liotta, J. Org. Chem.
1988, 53, 5058–5062.
To secure complete deprotonation at lower temperatures, tBuLi
was used.
a) D. B. Collum, A. J. McNeil, A. Ramirez, Angew. Chem. Int.
Ed. 2007, 46, 3002–3017; b) D. B. Collum, Acc. Chem. Res.
1992, 25, 448–454.
Use of nBuLi as a base resulted in the formation of a butyl
ketone derivative as a byproduct in the case of (S)-6e and (S)-
6f.
This research was partially supported by a Grant-in-Aid for Scien-
tific Research (B) 19390006 (K. T.), a Grant-in-Aid for Young Sci-
entists (B) 20790011 (M. S.), a Grant-in-Aid for Young Scientists
(Start-up) 60549004 (H. I.) from the Ministry of Education, Cul-
ture, Sports, Science and Technology (MEXT). We thank the Re-
search Center for Molecular Medicine, Faculty of Medicine, Hiro-
shima University and the Natural Science Center for Basic Re-
search and Development (N-BARD), Hiroshima University for the
use of their facilities.
[13]
[14]
[15]
[1] a) D. Hoppe, The Chemistry of Organolithium Compounds, vol.
1 (Eds.: Z. Rappoport, I. Marek), Wiley, Chichester, 2004, pp.
1055–1164; b) D. Hoppe, F. Marr, M. Brüggemann, Organo-
lithiums in Enantioselective Synthesis (Ed.: D. M. Hodgson),
Springer, New York, 2003, pp. 61–137; c) D. M. Hodgson, K.
Tomooka, E. Gras, Organolithiums in Enantioselective Synthe-
sis (Ed.: D. M. Hodgson), Springer, New York, 2003, pp. 217–
250; d) J. Clayden, Organolithiums: Selectivity for Synthesis,
Pergamon, Oxford, 2002, pp. 169–240; e) A. Basu, S. Thayum-
anavan, Angew. Chem. Int. Ed. 2002, 41, 717–738; f) V. K. Ag-
garwal, Angew. Chem. Int. Ed. Engl. 1994, 33, 175–177; g) E.
Buncel, J. M. Dust, Carbanion Chemistry: Structures and
[16]
[17]
The absolute stereochemistry of 7a–g was assigned by analogy
with 5. See ref.[20a]
M. T. Reetz, M. W. Drewes, A. Schmitz, Angew. Chem. Int. Ed.
Engl. 1987, 26, 1141–1143.
The m.p. of 1,4-dioxane is 11 °C.
Although the origin of the different temperature dependencies
of the rates for the organolithium racemization and the reac-
tion with aldehyde is not clear, the same trend is observed in
the [2,3]-Wittig rearrangement (Table 3).
We reported that [2,3]-Wittig rearrangement of the type ob-
served with 4 proceeds with inversion of configuration at the
[18]
[19]
[20]
Eur. J. Org. Chem. 2010, 6643–6650
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6649