by the fact that it is the harder, oxophilic Lewis acids which
are usually required for chelation with the geminal diester
moiety on the cyclopropane, while softer metals are usually
most successful in the Conia-ene reaction.
Scheme 1
.
Generalized Tandem Ring-Opening/Conia-ene
Process
Our study began with cyclopropane 12a (chosen for its
well-known reactivity in nucleophilic ring-opening chemis-
try) and indole 13a. Knowledge gained from our previous
work allowed us to arrive quickly at optimal reaction
conditions (Table 1); in fact, Zn(NTf2)2 at a loading of 5
Table 1. Optimization Studies
indole
entry (equiv)
time yield
(h) (%)
in the synthesis of heterocycles.7 Any nucleophilic moiety
(1) with a tethered alkynyl group could, in principle,
participate in a two-step sequence involving a nucleophilic
cyclopropane ring-opening reaction to yield a pendant
malonate and a subsequent Conia-ene8 reaction of the
malonate with the acetylenic group. Recently, we reported
successful examples of this process where the nucleophile
was an amino or a hydroxyl group resulting in the formation
of piperidines5a and tetrahydropyrans5b (Scheme 1). Given
that we have shown that indoles may nucleophilically open
cyclopropanediesters,9 we were curious whether indoles,
bearing an acetylene at the 2-position, would undergo the
tandem process described above with a net synthesis of
tetrahydrocarbazoles in what would be a formal [3 + 3]
cycloaddition.
catalyst
solvent
Sc(OTf)3 (10 mol %),
then ZnBr2 (3 equiv),
NEt3 (1 equiv)
Zn(NTf2)2 (20 mol %) benzene
Zn(NTf2)2 (10 mol %) benzene
Zn(NTf2)2 (5 mol %)
Zn(NTf2)2 (5 mol %)
Zn(NTf2)2 (5 mol %)
Zn(NTf2)2 (5 mol %)
1
2
3
4
5
6
7
1.1
1.1
1.4
1.4
1.4
1.4
1.4
benzene
1.5 63
2.0 84
2.0 87
4.0 88
24.0 n/a
23.0 84
benzene
toluene
CH2Cl2
ClCH2CH2Cl 1.5 84
mol % in refluxing dichloroethane emerged as the reaction
conditions of choice, giving tetrahydrocarbazole 15a in an
84% isolated yield (entry 7).
The main challenges for the implementation of the strategy
shown in Scheme 1 are twofold: (i) The nucleophiles’
reactivity must be orthogonal to that of the acetylenic group
(i.e., they must not react with each other), and (ii) a Lewis
acid must be found which can activate the cyclopropane
toward ring opening and also activate the acetylene in the
Conia-ene process. This last issue is somewhat complicated
(8) Thermal: (a) Conia, J. M.; Le Perchec, P. Synthesis 1975, 1. Au
mediated: (b) Pan, J.-H.; Yang, M.; Gao, Q.; Zhu, N.-Y.; Yang, D. Synthesis
2007, 2539. (c) Ochida, A.; Ito, H.; Sawamura, M. J. Am. Chem. Soc. 2006,
128, 16486. (d) Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. Angew.
Chem., Int. Ed. 2004, 43, 5350. (e) Kennedy-Smith, J. J.; Staben, S. T.;
Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526. Pd mediated: (f) Corkey,
B. K.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2764. (g) Corkey, B. K.;
Toste, F. D. J. Am. Chem. Soc. 2005, 127, 17168. In mediated: . (h)
Hatakeyama, S. Pure Appl. Chem. 2009, 81, 217. (i) Itoh, Y.; Tsuji, H.;
Yamagata, K.-i.; Endo, K.; Tanaka, I.; Nakamura, M.; Nakamura, E. J. Am.
Chem. Soc. 2008, 130, 17161. (j) Takahashi, K.; Midori, M.; Kawano, K.;
Ishihara, J.; Hatakeyama, S. Angew. Chem., Int. Ed. 2008, 47, 6244. (k)
Tsuji, H.; Yamagata, K.-i.; Itoh, Y.; Endo, K.; Nakamura, M.; Nakamura,
E. Angew. Chem., Int. Ed. 2007, 46, 8060. Cu/Ag cocatalyzed: (l) Deng,
C.-L.; Zou, T.; Wang, Z.-Q.; Song, R.-J.; Li, J.-H. J. Org. Chem. 2009, 74,
412. (m) Deng, C.-L.; Song, R.-J.; Guo, S.-M.; Wang, Z.-Q.; Li, J.-H. Org.
Lett. 2007, 9, 5111. Ni mediated: (n) Gao, Q.; Zheng, B.-F.; Li, J.-H.; Yang,
D. Org. Lett. 2005, 7, 2185. Ti mediated: (o) Kitigawa, O.; Suzuki, T.;
Inoue, T.; Watanabe, Y.; Taguchi, T. J. Org. Chem. 1998, 63, 9470. Co
mediated: (p) Renaud, J.-L.; Aubert, C.; Malacria, M. Tetrahedron 1999,
55, 5113. (q) Cruciani, P.; Stammler, R.; Aubert, C.; Malacria, M. J. Org.
Chem. 1996, 61, 2699. (r) Cruciani, P.; Aubert, C.; Malacria, M. Tetrahedron
Lett. 1994, 35, 6677. Zn mediated: . (s) Morikawa, S.; Yamazaki, S.;
Tsukada, M.; Izuhara, S.; Morimoto, T.; Kakiuchi, K. J. Org. Chem. 2007,
72, 6459. (t) Morikawa, S.; Yamazaki, S.; Furusaki, Y.; Amano, N.; Zenke,
K.; Kakiuchi, K. J. Org. Chem. 2006, 71, 3540. (u) Nakamura, M.; Liang,
C.; Nakamura, E. Org. Lett. 2004, 6, 2015. (v) Cavicchioli, M.; Marat, X.;
Monteiro, N.; Hartmann, B.; Balme, G. Tetrahedron Lett. 2002, 43, 2609.
(w) Marat, X.; Monteiro, N.; Balme, G. Synlett 1997, 845. Cu mediated: .
(x) Montel, S.; Bouyssi, D.; Balme, G. AdV. Synth. Catal. 2010, 352, 2315.
(9) (a) Harrington, P. E.; Kerr, M. A. Tetrahedron Lett. 1997, 38, 5949.
(b) Kerr, M. A.; Keddy, R. G. Tetraheron Lett. 1999, 5671. (c) England,
D. B.; Kuss, T. D. O.; Keddy, R. G.; Kerr, M. A. J. Org. Chem. 2001, 66,
4704.
(5) (a) Lebold, T. P.; Leduc, A. B.; Kerr, M. A. Org. Lett. 2009, 11,
3770. (b) Leduc, A. B.; Lebold, T. P.; Kerr, M. A. J. Org. Chem. 2009, 74,
8414.
(6) For reviews on donor-acceptor cyclopropanes, see: (a) Carson,
C. A.; Kerr, M. A. Chem. Soc. ReV. 2009, 38, 3051. (b) Rubin, M.; Rubina,
M.; Gevorgyan, V. Chem. ReV. 2007, 107, 3117. (c) Yu, M.; Pagenkopf,
B. L. Tetrahedron 2005, 61, 321. (d) Reissig, H.-U.; Zimmer, R. Chem.
ReV. 2003, 103, 1151. (e) Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip,
Y.-C.; Tanko, J.; Hudlicky, T. Chem. ReV. 1989, 89, 165. (f) Danishefsky,
S. Acc. Chem. Res. 1979, 12, 66.
(7) For leading references on the synthesis of heterocycles from
cyclopropanes, see: (a) Jackson, S. K.; Karadeolian, A.; Driega, A. B.; Kerr,
M. A. J. Am. Chem. Soc. 2008, 130, 4196. (b) Carson, C. A.; Kerr, M. A.
J. Org. Chem. 2005, 70, 8242. (c) Young, I. S.; Kerr, M. A. Angew. Chem.,
Int. Ed. 2003, 42, 3023. (d) Pohlhaus, P. D.; Johnson, J. S. J. Am. Chem.
Soc. 2005, 127, 16014. (e) Korotkov, V. S.; Larionov, O. V.; Hofmeister,
A.; Magull, J.; de Meijere, A. J. Org. Chem. 2007, 72, 7504. (f) Pohlhaus,
P. D.; Sanders, S. D.; Parsons, A. T.; Li, W.; Johnson, J. S. J. Am. Chem.
Soc. 2008, 130, 8642. (g) Perreault, C.; Goudreau, S. R.; Zimmer, L. E.;
Charette, A. B. Org. Lett. 2008, 10, 689. (h) Ivanova, O. A.; Budynina,
E. M.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii, P. V. Angew. Chem.,
Int. Ed. 2008, 47, 1107. (i) Lebold, T. P.; Kerr, M. A. Org. Lett. 2009, 11,
4354.
Org. Lett., Vol. 13, No. 2, 2011
221