Journal of the American Chemical Society
Article
Present Address
‡P.K.: J. Heyrovsky Institute of Physical Chemistry, Academy of
Sciences of the Czech republic, Dolejskova 2155/3, 18223
̌
Prague 8, Czech republic.
Author Contributions
†D.J.v.D. and P.K. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Dr. A. Goulet-Hanssens, M. Kathan, and S. Fredrich
for insightful comments and useful discussions. Generous
support by the European Research Council (ERC via ERC-
2012-STG_308117 “Light4Function”) is gratefully acknowl-
edged. BASF AG, Bayer Industry Services, and Sasol Germany
are thanked for generous donations of chemicals.
Figure 8. Graphical representation of the acylhydrazone library
presented in this work and their position in a 3D-plot with respect to
thermal half-life (t1/2 on X-axis, projection: yellow circles), absorption
maximum/excitation wavelength (λmax on Y-axis, projection: orange
circles), and band separation (Δλmax on Z-axis, projection: teal circles).
Spheres are colorized with a gradient according to their t1/2 (red to
blue).
REFERENCES
■
(1) (a) Beharry, A. A.; Woolley, G. A. Chem. Soc. Rev. 2011, 40,
4422−4437. (b) Szyman
Velema, W. A.; Feringa, B. L. Chem. Rev. 2013, 113, 6114−6178.
(c) Broichhagen, J.; Trauner, D. Curr. Opin. Chem. Biol. 2014, 21,
121−127.
ski, W.; Beierle, J. M.; Kistemaker, H. A. V.;
In summary, a library of over 40 acylhydrazone photo-
switches with a broad range of different properties, depending
on their substituents, was readily prepared by an easy and
modular synthesis and subsequently analyzed. Their address-
ability by light is highly tunable and excellent band separation
of the isomers with large differences of over 100 nm as well as
access to both negative and positive photochromic systems was
obtained. Both hypsochromic and bathochromic shifts can be
induced upon isomerization of the (E)- to the (Z)-isomer,
depending on the particular structure of the photoswitch.
Importantly, their thermal stability can be controlled and
properties span the entire scale from P-type to T-type
chromophores, without the need to specifically stabilize the
(Z)-isomer, and with tunable half-lives ranging from minutes to
several hours for the T-type photoswitches. Moreover, a wide
variety of moieties, such as electron-withdrawing and -donating,
large aromatic and heteroaromatic groups could be introduced
without inhibiting the photochromic function, which opens the
door to a myriad of applications for these photoswitches.
Current work in our laboratories is aiming to further
bathochromically shift the absorbance maxima and to increase
the amount of (Z)-isomer in the photostationary state.
Importantly, we are actively trying to integrate this new class
of photoswitches into our design of remote-controlled catalytic
and (supra)molecular systems.
(2) For reviews, see: (a) Goulet-Hanssens, A.; Barrett, C. J. J. Polym.
Sci., Part A: Polym. Chem. 2013, 51, 3058−3070. (b) Broichhagen, J.;
Frank, J. A.; Trauner, D. Acc. Chem. Res. 2015, 48, 1947−1960.
(c) Velema, W. A.; Szymanski, W.; Feringa, B. L. J. Am. Chem. Soc.
2014, 136, 2178−2191. Two representative examples include:
(d) Schonberger, M.; Althaus, M.; Fronius, M.; Clauss, W.; Trauner,
̈
D. Nat. Chem. 2014, 6, 712−719. (e) Koce
̧ r, A.; Walko, M.; Feringa, B.
L. Nat. Protoc. 2007, 2, 1426−1437.
(3) For comprehensive reviews, see: (a) Molecular Switches; Feringa,
B. L., Browne, W. R., Eds.; John Wiley & Sons: Weinheim, Germany,
2011. (b) Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Chem.
Rev. 2014, 114, 12174−12277. (c) Gostl, R.; Senf, A.; Hecht, S. Chem.
̈
Soc. Rev. 2014, 43, 1982−1996. (d) Stoll, R. S.; Hecht, S. Angew.
Chem., Int. Ed. 2010, 49, 5054−5075. Representative examples
include: (e) Khan, A.; Kaiser, C.; Hecht, S. Angew. Chem., Int. Ed.
2006, 45, 1878−1881. (f) Stoll, R. S.; Peters, M. V.; Kuhn, A.; Heiles,
S.; Goddard, R.; Buhl, M.; Thiele, C. M.; Hecht, S. J. Am. Chem. Soc.
̈
2009, 131, 357−367. (g) van Dijken, D. J.; Beierle, J. M.; Stuart, M. C.
́
A.; Szymanski, W.; Browne, W. R.; Feringa, B. L. Angew. Chem., Int. Ed.
2014, 53, 5073−5077. (h) Lohse, M.; Nowosinski, K.; Traulsen, N. L.;
Achazi, A. J.; von Krbek, L. K. S.; Paulus, B.; Schalley, C. A.; Hecht, S.
Chem. Commun. 2015, 51, 9777−9780.
(4) (a) Zhang, J.; Zou, Q.; Tian, H. Adv. Mater. 2013, 25, 378−399.
(b) Fihey, A.; Perrier, A.; Browne, W. R.; Jacquemin, D. Chem. Soc.
Rev. 2015, 44, 3719−3759. (c) Abendroth, J. M.; Bushuyev, O. S.;
Weiss, P. S.; Barrett, C. J. ACS Nano 2015, 9, 7746−7768. (d) Russew,
M.-M.; Hecht, S. Adv. Mater. 2010, 22, 3348−3360.
(5) For a concise review, consult: (a) Klajn, R. Pure Appl. Chem.
2010, 82, 2247−2279. Representative examples include: (b) van der
Molen, S. J.; Liljeroth, P. J. Phys.: Condens. Matter 2010, 22, 133001.
(c) Alemani, M.; Peters, M. V.; Hecht, S.; Rieder, K.-H.; Moresco, F.;
Grill, L. J. Am. Chem. Soc. 2006, 128, 14446−14447. (d) Dri, C.;
Peters, M. V.; Schwarz, J.; Hecht, S.; Grill, L. Nat. Nanotechnol. 2008,
3, 649−653. (e) Orgiu, E.; Crivillers, N.; Herder, M.; Grubert, L.;
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental details, 1H and 13C NMR spectra and UV/
vis absorption spectra for all compounds, fatigue
resistance, photostationary state and quantum yield
Patzel, M.; Frisch, J.; Pavlica, E.; Duong, D. T.; Bratina, G.; Salleo, A.;
̈
Koch, N.; Hecht, S.; Samorì, P. Nat. Chem. 2012, 4, 675−679.
(f) Gemayel, M. E.; Borjesson, K.; Herder, M.; Duong, D. T.;
̈
́
Hutchison, J. A.; Ruzie, C.; Schweicher, G.; Salleo, A.; Geerts, Y.;
Hecht, S.; Orgiu, E.; Samorì, P. Nat. Commun. 2015, 6, 6330.
(g) Bonacchi, S.; El Garah, M.; Ciesielski, A.; Herder, M.; Conti, S.;
Cecchini, M.; Hecht, S.; Samorì, P. Angew. Chem., Int. Ed. 2015, 54,
4865−4869.
AUTHOR INFORMATION
■
Corresponding Author
(6) (a) Bandara, H. M. D.; Burdette, S. C. Chem. Soc. Rev. 2012, 41,
1809−1825. (b) Waldeck, D. H. Chem. Rev. 1991, 91, 415−436.
I
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX