E. Tayama et al. / Tetrahedron Letters 53 (2012) 5159–5161
5161
Table 4
Cu(II)–Brønsted acid co-catalyzed intermolecular aromatic substitution of 1 with 2a
Acknowledgment
This work was supported by Grant for Basic Science Research
Projects from The Sumitomo Foundation (110187).
Supplementary data
Supplementary data associated with this article can be found, in
Entry
R1
x
Brønsted acid
Time (h)
Product
3a (%)
1
2
3
4
5
6
7
8
CO2Et
CO2Et
CO2Et
CO2Et
CO2Et
CONEt2
CONEt2
CH2OMe
CH2OMe
Ph
1
1
1
1
0
1
0
1
0
1
0
1
1
0
1
1
1
TsOHÁH2O
DL-CSAb
PPTS
TfOH
TfOH
TfOH
TfOH
TfOH
TfOH
TfOH
TfOH
TfOH
Tf2NH
Tf2NH
Tf2NH
Tf2NH
Tf2NH
24
24
24
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3a
3a
3a
3a
3a
3b
3b
3f
30
37
6
86
91
69
0
78
6
85
61
5
77
51
11
28
27
References and notes
1. For reviews, see: (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds; Wiley: New York, 1998;
(b) Davies, H. M. L. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Eds.; Pergamon: Oxford, 1991; Vol. 4,. Chapter 4.8.
2. (a) Park, C. P.; Nagle, A.; Yoon, C. H.; Chen, C.; Jung, K. W. J. Org. Chem. 2009, 74,
6231–6236; (b) Davies, H. M. L.; Jin, Q. Org. Lett. 2004, 6, 1769–1772; (c) Davies,
H. M. L.; Smith, H. D.; Hu, B.; Klenzak, S. M.; Hegner, F. J. J. Org. Chem. 1992, 57,
6900–6903; (d) Toda, M.; Hattori, M.; Okada, K.; Oda, M. Chem. Lett. 1987, 16,
1263–1266; (e) Ledon, H.; Linstrumelle, G.; Julia, S. Bull. Soc. Chim. Fr. 1973,
2065–2071.
3. Examples of intermolecular aromatic substitution using heteroaromatic
compounds, see: (a) Chan, W. W.; Yeung, S. H.; Zhou, Z.; Chan, A. S. C.; Yu,
W. Y. Org. Lett. 2010, 12, 604–607; (b) Davies, H. M. L.; Hedley, S. J. Chem. Soc.
Rev. 2007, 36, 1109–1119. and references therein.
4. An example of rhodium and copper catalyzed intramolecular aromatic
substitution and their mechanistic studies, see: Kim, J.; Ohk, Y.; Park, S. H.;
Jung, Y.; Chang, S. Chem. Asian J. 2011, 6, 2040–2047.
9
3f
10
11
12
13
14
15
16
17
3ga
3ga
3j
3a
3a
3b
3f
Ph
H
CO2Et
CO2Et
CONEt2
CH2OMe
Ph
3ga
a
Isolated yield.
b
CSA = camphorsulfonic acid.
5. Tayama, E.; Yanaki, T.; Iwamoto, H.; Hasegawa, E. Eur. J. Org. Chem. 2010, 6719–
6721.
6. Previous examples of acid-promoted intramolecular aromatic substitution, see:
(a) Wang, H. L.; Li, Z.; Wang, G. W.; Yang, S. D. Chem. Commun. 2011, 47, 11336–
11338; (b) Doyle, M. P.; Shanklin, M. S.; Pho, H. Q.; Mahapatro, S. N. J. Org.
Chem. 1988, 53, 1017–1022; (c) Johnson, D. W.; Mander, L. N. Aust. J. Chem.
1974, 27, 1277–1286; (d) Newman, M. S.; Eglinton, G.; Grotta, H. M. J. Am.
Chem. Soc. 1953, 75, 349–352.
7. For a review of Brønsted acid catalyzed reaction using diazo compounds, see:
Johnston, J. N.; Muchalski, H.; Troyer, T. L. Angew. Chem., Int. Ed. 2010, 49, 2290–
2298.
8. Examples of transition metal–acid co-catalyzed reaction using diazo
compounds, see: (a) Xu, X.; Zhou, J.; Yang, L.; Hu, W. Chem. Commun. 2008,
6564–6566; (b) Hu, W.; Xu, X.; Zhou, J.; Liu, W. J.; Huang, H.; Hu, J.; Yang, L.;
Gong, L. Z. J. Am. Chem. Soc. 2008, 130, 7782–7783.
9. Although the reactions of entry 4 (total 2 mol %) and entry 8 (total 1 mol %) in
Table 1 were quenched for 1 h, a remarkable difference between the yields was
not observed (entry 4: 38%, entry 8: 30%).
an acid component (Table 4, entries 1–4). The use of a strongly
acidic Brønsted acid such as triflic acid afforded the adduct 3a in
excellent yield (entry 4). Interestingly, the reaction of 1a proceeded
smoothly without Cu(II) salts (entry 5). When reactions of the less-
reactive substrate 1 were examined, the addition of Cu(acac)2 was
necessary to obtain adduct 3 in acceptable yields (entries 6–11).
Again, the reaction of N,N-dimethylaniline (1j) did not proceed un-
der these conditions (entry 12). The analogue of triflic acid, bistri-
flimide (Tf2NH), also worked as a Brønsted acid catalyst; however,
the catalytic activity was lowered (entries 13–17).
10. We attempted reactions using diazoesters without an a-aryl substituent such
In conclusion, we have demonstrated the Cu(II)–acid co-cata-
lyzed intermolecular aromatic substitution of N,N-dialkylanilines
or alkoxybenzenes with diazoesters. This method is a mild and rare
metal-free C–C bond formation reaction between aromatic (sp2)
and aliphatic (sp3) carbons.
as cyclohexyl 2-diazoacetate or cyclohexyl 2-diazo-3-oxobutanoate; however,
the corresponding products were not obtained.
11. Davies et al. reported that the electrophilic aromatic substitution reaction
proceeds in the presence of electron-deficient rhodium catalysts (Ref. 2b). Acid
catalysts may interact with the ligands around Cu(II), leading to more electron-
deficient catalysts.