P.M.T. Ferreira et al. / Tetrahedron 67 (2011) 193e200
199
2H, ArH), 8.10e8.18 (m, 2H, ArH) ppm. 13C NMR (100.6 MHz, CDCl3):
28.13 [C(CH3)3], 43.10 ( CH), 52.08 (OCH3), 57.01 ( CH), 80.07 [OC
and 139.27 (C), 139.82 and 139.87 (C), 155.14 (C]O) 170.91 and
171.13 (C]O), 171.54 and 171.66 (C]O) ppm.
b
a
(CH3)3], 122.85 (CH), 122.96 (CH), 125.26 (CH), 125.43 (CH), 125.51
(CH), 125.62 (CH), 125.85 (CH), 126.26 (CH), 126.45 (CH), 126.61 (CH),
127.85 (CH), 127.97 (CH), 128.99 (CH), 129.14 (CH), 131.24 (C), 131.95
(C), 133.93 (C), 134.13 (C), 135.54 (C), 136.79 (C), 155.16 (C]O), 172.67
(C]O) ppm. Anal. Calcd for C29H29NO4 (455.54): C 76.46, H 6.42, N
3.07; found C 76.44, H 6.60, N 3.14.
Acknowledgements
~
Foundation for the Science and Technology for Fundasao para
ˇ
a Ciencia e Tecnologia (FCT)dPortugal and FEDER (Fundo Europeu
de Desenvolvimento Regional) for financial support to Centro de
Química (CQ-UM) and Centro de Física (CFUM) of University of
Minho and through research project PTDC/QUI/81238/2006, cofi-
nanced by FCT and program FEDER/COMPETE (FCOMP-01-0124-
FEDER-007467). The NMR spectrometer Bruker Avance II 400 is
part of the National NMR Network and was purchased in the
framework of the National Programme for Scientific Re-equip-
4.3.4. Controlled potential electrolysis of 4d. The general procedure
described above using 4d (58.1 mg, 0.115 mmol, 0.008 mol dmꢀ3) as
substrate was followed to give 7d as a white solid (45.4 mg, 78%). The
compound was purified by column chromatography using diethyl
ether/petroleum ether 1/9 and then 1/8 as eluent. Mp 110.0e111.0 ꢃC.
1H NMR (400 MHz, CDCl3): 1.34 (s, 9H, CH3 Boc), 3.35 (s, 3H, OCH3),
3.35e3.37 (m, 4H, 2 CH2), 5.00 (br d, J¼8.4 Hz, 1H, NH), 5.25 (br t,
ment, contract REDE/1517/RMN/2005, with funds from POCI 2010
(FEDER) and Fundac¸ ao para a Ciencia e a Tecnologia (FCT). G.P.
acknowledges FCT for a Ph.D. grant SFRH/BD/38766/2007.
ˇ
~
J¼7.5 Hz,1H,
a
CH), 5.87 (d, J¼6.9 Hz,1H,
bCH), 7.21e7.25 (m, 5H, ArH),
7.34e7.43 (m, 2H, ArH), 7.56e7.78 (m, 3H, ArH) ppm. 13C NMR
(100.6 MHz, CDCl3): 28.15 [C(CH3)3], 29.82 (CH2), 30.46 (CH2), 42.40
(b-CH), 52.08 (OCH3), 57.05 (a-CH), 79.95 [OC(CH3)3], 118.57 (CH),
Supplementary data
118.84 (CH), 118.97 (CH), 119.2 (CH), 119.27 (CH), 126.95 (CH), 127.47
(CH),127.97 (CH),128.21 (CH),130.01 (C),131.43 (C),132.80 (C),139.49
(C),139.71 (C),145.25 (C),145.45 (C),146.46 (C),146.70 (C),155.30 (C]
O),171.79 (C]O) ppm. Anal. Calcd for C33H33NO4 (507.62): C 78.08, H
6.55, N 2.67; found C 77.88, H 6.91, N 2.72.
Supplementary data related to this article can be found online,
InChIKeys of the most important compounds described in this
article.
References and notes
4.3.5. Controlled potential electrolysis of 5c. The general procedure
described above using 5c (90.2 mg, 0.224 mmol, 0.015 mol dmꢀ3) as
substrate was followed to give 8c as 1:1 mixture of diastereomers
(68.4 mg, 76%). The diastereomers were separated by column chro-
matographyusingdiethylether/petroleumether1/5aseluenttogive:
mp 134.0e135.0 ꢃC. 1H NMR (300 MHz, CDCl3): 1.36 (s, 9H, CH3 Boc),
3.43 (s, 3H, OCH3), 4.93 (br d, J¼7.8 Hz, 1H, NH), 5.10e5.22 (m, 2H,
1. Grishaw, J. Electrochemical Reactions and Mechanisms in Organic Chemistry;
Elsevier Science B.V.: The Netherlands, 2000, pp 54e89.
2. (a) Zimmer, J. P.; Richards, J. A.; Turner, J. C.; Evans, D. H. Anal. Chem. 1971, 43,
1000e1006; (b) Annapoorna, S. R.; Prasada, M. J. Electroanal. Chem. 2000, 490,
93e97; (c) Quintana-Espinoza, P.; Yanez, C.; Escobar, C. A.; Sicker, D.; Araya-
Maturana, R.; Siquella, J. A. Electroanalysis 2006, 521e525; (d) Pastor, F. T.;
Drakulic, B. J. Tetrahedron Lett. 2010, 51, 734e738.
~
aCHþbCH), 7.15e7.33 (m, 5H, ArH), 7.42e7.56 (m, 3H, ArH), 7.67 (br d,
3. (a) Ferreira, P. M. T.; Maia, H. L. S.; Monteiro, L. S.; Sacramento, J.; Sebastiao,
J. J. Chem. Soc., Perkin Trans. 1 2000, 3317e3324; (b) Ferreira, P. M. T.; Maia,
H. L. S.; Monteiro, L. S.; Sacramento, J. J. Chem. Soc., Perkin Trans. 1 2001,
3167e3174; (c) Ferreira, P. M. T.; Maia, H. L. S.; Monteiro, L. S. Eur. J. Org.
Chem. 2003, 2635e2644; (d) Abreu, A. S.; Ferreira, P. M. T.; Monteiro, L. S.;
Queiroz, M. J. R. P.; Ferreira, I. C. F. R.; Calhelha, R. C.; Estevinho, L. M.
Tetrahedron 2004, 60, 11821e11828; (e) Ferreira, P. M. T. Eur. J. Org. Chem.
2006, 3226e3234.
J¼6.9 Hz, 1H, ArH), 7.78e7.86 (m, 2H, ArH), 8.05e8.08 (m, 1H, ArH)
ppm. 13C NMR (100.6 MHz, CDCl3): 28.17 [C(CH3)3], 49.25 (CH), 51.95
(OCH3), 57.34 (CH), 80.14 [OC(CH3)3],123.15 (CH),124.82 (CH),125.30
(CH), 125.55 (CH), 126.34 (CH), 127.17 (CH), 127.92 (CH), 128.43 (CH),
128.52 (CH), 128.97 (CH),132.01 (C), 134.17 (C), 134.69 (C), 139.66 (C),
155.09 (C]O), 173.09 (C]O) ppm. Anal. Calcd for C25H27NO4
(405.49): C 74.05, H 6.71, N 3.45; found C 73.89, H 6.75, N 3.55.
Oil, 1H NMR (400 MHz, CDCl3): 1.41 (s, 9H, CH3 Boc), 3.56 (s, 3H,
4. Ferreira, P. M. T.; Maia, H. L. S.; Monteiro, L. S. Tetrahedron Lett. 2003, 44,
2137e2139.
5. Ferreira, P. M. T.; Monteiro, L. S.; Pereira, G. Amino Acids 2010, 39, 499e513.
6. (a) Zhu, G.; Zhang, X. J. Org. Chem. 1998, 63, 3133e3138; (b) Giernoth, R.;
Heinrich, H.; Adams, N. J.; Deeth, R. J.; Bargon, J.; Brown, J. M. J. Am. Chem. Soc.
2000, 122, 12381e12382; (c) Ohashi, A.; Imamoto, T. Org. Lett. 2001, 3,
373e375; (d) Shultz, C. S.; Dreher, S. D.; Ikemoto, N.; Williams, J. M.; Gra-
bowski, E. J. J.; Krska, S. W.; Sun, Y.; Dormer, P. G.; DiMichele, L. Org. Lett.
2005, 7, 3405e3408.
7. Silva, N. O.; Abreu, A. S.; Ferreira, P. M. T.; Queiroz, M.-J. R. P. Tetrahedron Lett.
2003, 44, 3377e3379.
8. (a) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633e9695; (b)
Pereira, G.; Castanheira, E. M. S.; Ferreira, P. M. T.; Queiroz, M.-J. R. P. Eur. J. Org.
Chem. 2010, 464e475.
9. Sarrazin, J.; Tallec, A. Electrochim. Acta 1982, 27, 95e104.
10. Valeur, B. Molecular FluorescencedPrinciples and Applications; Wiley-VCH:
Weinheim, 2001.
11. Berlman, I. B. Handbook of Fluorescence Spectra of Aromatic Molecules; Academic:
London, UK, 1971.
OCH3), 4.88 (br d, J¼6.9 Hz, 1H, NH), 5.25 (br t, J¼4.8 Hz, 1H,
aCH),
5.33 (d, J¼4.8 Hz, 1H, CH), 7.22e7.31 (m, 5H, ArH), 7.41e7.51 (m,
b
3H, ArH), 7.72 (br d, J¼5.4 Hz, 1H, ArH), 7.78 (br d, J¼6.0 Hz, 1H,
ArH), 7.82e7.84 (m, 1H, ArH), 7.97e7.99 (m, 1H, ArH) ppm. 13C
NMR (100.6 MHz, CDCl3): 28.22 [C(CH3)3], 47.97 (CH), 52.25
(OCH3), 57.04 (CH), 80.19 [OC(CH3)3], 123.52 (CH), 125.03 (CH),
125.34 (CH), 125.44 (CH), 126.16 (CH), 127.21 (CH), 127.87 (CH),
128.68 (CH), 128.76 (CH), 128.84 (CH), 131.41 (C), 133.99 (C), 136.32
(C), 139.45 (C), 155.33 (C]O), 172.54 (C]O) ppm. Anal. Calcd for
C25H27NO4 (405.49): C 74.05, H 6.71, N 3.45; found C 74.61, H 7.07,
N 3.45.
12. Turro, N. J.; Scaiano, J. C.; Ramamurthy, V. Modern Molecular Photochemistry of
Organic Molecules; University Science Books: Sausalito (California), CA, 2009.
13. (a) Melhuish, W. H. J. Phys. Chem. 1961, 65, 229e235; (b) Dawson, W. R.;
Windsor, M. W. J. Phys. Chem. 1968, 72, 3251e3260.
14. Wiessner, A.; Huttmann, G.; Kuhnle, W.; Staerk, H. J. Phys. Chem. 1995, 99,
14923e14930.
4.3.6. Controlled potential electrolysis of 6a. The general procedure
described above using 6a (75.0 mg, 0.15 mmol) as substrate was
followed to give 9a as mixture of diastereomers (64.8 mg, 86%).
1H NMR (300 MHz, CDCl3): 1.36 (s, 9H, CH3 Boc), 2.89e3.01 (m,
2H, CH2), 3.48 and 3.50 (2s, 3H, OCH3), 4.26e4.43 (m, 1H, CH), 4.72
and 4.90 (2br s, 1H, NH), 5.33e5.37 (m, 1H, CH), 6.22e6.27 (m, 1H,
CH), 7.03e7.28 (m, 16H, ArHþNH) ppm. 13C NMR (100.6 MHz,
CDCl3): 28.16 [C(CH3)3], 37.83 and 38.17 (CH2), 52.10 and 52.16
(OCH3), 53.13 and 53.72 (CH), 55.23 and 55.55 (CH), 80.13 [OC
(CH3)3], 127.11 and 127.15 (CH), 127.30 and 127.37 (CH), 128.15 and
128.16 (CH), 128.45 and 128.54 (CH), 128.55 (CH), 128.73 (CH),
128.74 and 128.84 (CH), 129.22 and 129.29 (CH), 136.43 (C), 139.16
€
€
15. Techert, S.; Schmatz, S.; Wiessner, A.; Staerk, H. J. Phys. Chem. A 2000, 104,
5700e5710.
16. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Ha-
segawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;
Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Ra-
ghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;