Table 3 Formation of alcohols 18 and dienes 20a
N. C. thanks the Fonds der Chemischen Industrie for a
Liebig-Fellowship. M. W. thanks the Roche Research
Foundation and the Alexander von Humboldt Foundation
for fellowships. We are grateful to Solvias for MeOBiphep,
Takasago for Segphos and H8-Binap and Umicore for
rhodium salts.
Notes and references
Entry 15 Condition R
18/20 % Yieldb erc
y Crystallographic data for 21: C25H27N3O5, M = 449.51, triclinic,
space group P1, a = 7.9939 (5) A, b = 11.9064 (9) A, c = 13.8485 (12)
A, a = 68.816 (3)1, b = 77.480 (4)1, g = 72.174 (3)1, V = 1161.6 (2)
A3, Z = 2, Dcalc = 1.285 Mg mꢀ3, T = 100 K, reflections collected:
6601, independent reflections: 4009 (Rint = 0.062), R(all) = 0.0818,
wR(gt) = 0.1508. CCDC 779921.
1
15a A
15a B
15b A
15b B
15c A
15c B
15d A
15d B
Ph
Ph
18a
20a
76
68
78 : 22 (+)
95 : 5 (ꢀ)
88 : 12 (ꢀ)
98 : 2 (ꢀ)
89 : 11 (+)
99 : 1 (ꢀ)
88 : 12 (ꢀ)
98 : 2 (ꢀ)
ꢀ
2
3d
4
4-MeO–C6H4 ent-18b 75
4-MeO–C6H4 20b
4-Cl–Ph
4-Cl–Ph
3,5-Me–C6H3 ent-18d 75
3,5-Me–C6H3 20d 81
82
72
71
5
18c
20c
6
7d
8
1 S. C. Denmark and N. G. Almstead, in Modern
Carbonyl Chemistry, ed. J. Otera, Wiley-VCH, Weinheim, 2000,
ch. 10, pp. 299–401.
a
Conditions A: 0.05 mmol 15, 5 mol% [Rh(OH)(cod)]2, 12.0 mol%
ent-L6, 1.0 equiv. Cs2CO3, PhCl (0.15 M), 120 1C, 12 h; Conditions B:
0.05 mmol 15, 5 mol% [Rh(OAc)(C2H4)2]2, 12.0 mol% ent-L6,
2 For an overview see: (a) H. Yorimitsu and K. Oshima, Bull. Chem.
Soc. Jpn., 2009, 82, 778–792; Recent examples with zinc:
(b) P. Jones, N. Millot and P. Knochel, Chem. Commun., 1998,
2405; (c) P. Jones and P. Knochel, Chem. Commun., 1998, 2407;
(d) P. Jones and P. Knochel, J. Org. Chem., 1999, 64, 186; with tin:
(e) A. Yanagisawa, T. Aoki and T. Arai, Synlett, 2006, 2071; with
gallium: (f) S. Hayashi, K. Hirano, H. Yorimitsu and K. Oshima,
Org. Lett., 2005, 7, 3577; with ruthenium: (g) T. Kondo, K. Kodoi,
E. Nishinaga, T. Okada, Y. Morisaki, Y. Watanabe and
T. Mitsudo, J. Am. Chem. Soc., 1998, 120, 5587; with nickel:
(h) D. Necas, M. Tursky and M. Kotora, J. Am. Chem. Soc., 2004,
126, 10222; (i) Y. Sumida, S. Hayashi, K. Hirano, H. Yorimitsu
and K. Oshima, Org. Lett., 2008, 10, 1629.
3 (a) S. Hayashi, K. Hirano, H. Yorimitsu and K. Oshima, J. Am.
Chem. Soc., 2006, 128, 2210; (b) Y. Takada, S. Hayashi,
K. Hirano, H. Yorimitsu and K. Oshima, Org. Lett., 2006, 8,
2515; (c) S. Hayashi, K. Hirano, H. Yorimitsu and K. Oshima,
J. Am. Chem. Soc., 2007, 129, 12650; (d) M. Iwasaki, S. Hayashi,
K. Hirano, H. Yorimitsu and K. Oshima, J. Am. Chem. Soc., 2007,
129, 4463; (e) M. Iwasaki, S. Hayashi, K. Hirano, H. Yorimitsu
and K. Oshima, Tetrahedron, 2007, 63, 5200; (f) M. Iwasaki,
H. Yorimitsu and K. Oshima, Bull. Chem. Soc. Jpn., 2009, 82,
249; (g) M. Iwasaki, H. Yorimitsu and K. Oshima, Synlett, 2009,
2177.
4 For reviews on enantioselective carbonyl allylation see:
(a) J. W. J. Kennedy and D. G. Hall, Angew. Chem., Int. Ed.,
2003, 42, 4732; (b) S. E. Denmark and J. Fu, Chem. Rev., 2003,
103, 2763; (c) I. Marek and G. Sklute, Chem. Commun., 2007, 1683;
(d) D. G. Hall, Synlett, 2007, 1644.
5 R. Shintani, K. Takatsu and T. Hayashi, Org. Lett., 2008, 10, 1191.
6 M. Waibel and N. Cramer, Angew. Chem., Int. Ed., 2010, 49, 4455.
7 L. Xue, K. C. Ng and Z. Lin, Dalton Trans., 2009, 5841.
8 Ring-opening reactions of oxa- and aza-bicyclic compounds follow
a distinctively different mechanism. For leading references see:
(a) M. Lautens, K. Fagnou and S. Hiebert, Acc. Chem. Res., 2003,
36, 48; (b) M. Lautens and S. Hiebert, J. Am. Chem. Soc., 2004,
126, 1437.
b
20 mg 4 A MS, PhCl (0.15 M), 120 1C, 12 h. Isolated product
18 or 20. Determined by HPLC with a CSP (sign of the optical
d
rotation). With L6.
c
yield 20.13 A range of secondary alcohols 18 and methylene
cyclohexenes 20 can be accessed from norbornenols 15 using
these complementary conditions (Table 3). The observed
enantioselectivities for the formation of 20 (entries 2, 4, 6, 8)
are excellent and generally significantly higher than those for
the formation of 18 (entries 1, 3, 5, 7), demonstrating a
pronounced effect of the added base on the selectivity.11 The
relative configuration of the secondary alcohol function of 18
was assigned by X-ray crystal structure analysis of the
Diels–Alder adduct 21 obtained from 18a and 4-phenyl-3H-
1,2,4-triazoline-3,5-dione (PTAD) (Scheme 7).y 14 This selectivity
suggests a facial reduction of the carbonyl group as depicted
for 17 (Scheme 5).
In summary we showed that bicyclic meso-tert-norbornenols
can be desymmetrized by retro-allylation mechanisms with
chiral rhodium(I) catalysts. Subtle differences of the substrate
structure and more importantly of the reaction conditions lead
to diverging reaction pathways and hold the promise of a
further rich downstream chemistry. Ongoing research is
directed towards a deeper understanding and control of the
individual steps as well as the development of synthetic
applications.
9 At least two regioisomeric dienes 6 were observed as transients, but
they mostly convert to 8 duringthe course of the reaction.
10 (a) F. Shibahara, J. F. Bower and M. J. Krische, J. Am. Chem.
Soc., 2008, 130, 6338; (b) F. Shibahara, J. F. Bower and
M. J. Krische, J. Am. Chem. Soc., 2008, 130, 14120;
(c) J. F. Bower, R. L. Patman and M. J. Krische, Org. Lett.,
2008, 10, 1033.
11 The inorganic base is required to ensure a high reactivity and clean
reaction, however at the expense of some enantioselectivity.
12 Small, but detectable amounts of 12 are formed during the
reaction.
13 (a) M. Lautens, C. Dockendorff, K. Fagnou and A. Malicki, Org.
Lett., 2002, 4, 1311; (b) L. Navarre, S. Darses and J.-P. Genet, Chem.
Commun., 2004, 1108; (c) T. Miura, T. Sasaki, T. Harumashi and
M. Murakami, J. Am. Chem. Soc., 2006, 128, 2516.
14 For determination of the absolute configuration of ent-18d see
ESI.z Retro-allylations with L6 proceed Re with the norbornenol
scaffold.
Scheme 7 Determination of the relative configuration of 18 as its
Diels–Alder adduct 21.
c
348 Chem. Commun., 2011, 47, 346–348
This journal is The Royal Society of Chemistry 2011