620 Journal of Medicinal Chemistry, 2011, Vol. 54, No. 2
Bertinaria et al.
(4) Stvolinsky, S. L.; Dobrota, D. Anti-ischemic Activity of Carnosine.
Biochemistry (Moscow) 2000, 65, 998–1005.
(5) Hipkiss, A. R. Could Carnosine or Related Structures Suppress
Alzheimer Disease? J. Alzheimer’s Dis. 2007, 11, 229–240and
references therein .
(25) Bellia, F.; Amorini, A. M.; La Mendola, D.; Vecchio, G.; Tavazzi,
B.; Giardina, B.; Di Pietro, V.; Lazzarino, G.; Rizzarelli, E. New
glycosidic derivatives of histidine-containing dipeptides with anti-
oxidant properties and resistant to carnosinase activity. Eur.
J. Med. Chem. 2008, 43, 373–380.
(26) Hamdoune, F.; El Moujahid, C.; Rodehuser, L.; Gerardin, C.;
Henry, B.; Stebe, M.; Amos, J.; Marraha, M.; Asskali, A.; Selve, C.
Amphiphilic and cation-complexing compounds based on pepti-
doamines. New J. Chem. 2000, 24, 1037–1042.
(6) Aldini, G.; Carini, M.; Beretta, G.; Bradamante, S.; Maffei Facino,
R. Carnosine is a quencher of 4-hydroxy-nonenal: through what
mechanism of reaction? Biochem. Biophys. Res. Commun. 2002,
298, 699–706.
(27) Baran, E. J. Metal complexes of carnosine. Biochemistry (Moscow)
2000, 75, 928–937.
(28) Daniele, P. G.; Prenesti, E.; Zelano, V.; Ostacoli, G. Chemical
relevance of the copper(II)-L-carnosine system in aqueous solu-
tion: a thermodynamic and spectrophotometric study. Spectro-
chim. Acta, Part A 1993, 9, 1299–1306.
(29) Shen, J.; Li, Y.-Z.; Zhang, D.-M.; Chen, J.-H. Diaquabis[μ2-3-(1H-
imidazol-5-yl)-2-(3-iminopropionamido)propionate-κ4 N:N0,N00,
O]dicopper(II) dihydrate. Acta Crystallogr., Sect. E: Struct. Rep.
Online 2007, 63, m2569–m2570.
(30) De Stefano, C.; Mineo, P.; Rigano, C.; Sammartano, S. Ionic
strength dependence of formation constants. XVII. The calculation
of equilibrium concentrations and formation constants. Ann.
Chim. (Rome) 1993, 83, 243–277.
(7) Liu, Y.; Xu, G.; Sayre, L. M. Carnosine Inhibits (E)-4-Hydroxy-2-
nonenal-Induced Protein Cross-Linking: Structural Characteriza-
tion of Carnosine-HNE Adducts. Chem. Res. Toxicol. 2003, 16,
1589–1597.
(8) Guiotto, A.; Calderan, A.; Ruzza, P.; Borin, G. Carnosine and
Carnosine-Related Antioxidants: A Review. Curr. Med. Chem.
2005, 12, 2293–2315.
(9) Bierhaus, A.; Hofman, M.; Ziegler, R.; Nawroth, P. P. AGEs and
their interactions with AGE receptors in vascular disease and
diabetes mellitus. 1. AGE concept. Cardiovasc. Res. 1998, 37,
586–600.
(10) Hipkiss, A. R.; Michaelis, J.; Syrris, P. Non-enzymatic glycosation
of the dipeptide L-carnosine, a potential anti-protein-cross-linking
agent. FEBS Lett. 1995, 371, 81–85.
(31) Eberhardt, M. K. Reactive Oxygen Metabolites; CRC Press: Boca
Raton, FL, 2000.
(11) Hipkiss, A. R.; Brownson, C. A possible new role for the
anti ageing peptide carnosine. Cell. Mol. Life Sci. 2000, 57,
747–753.
(12) Hobart, L.; Seibel, I.; Yeargans., G. S.; Seidler, N. W. Anti-cross-
linking properties of carnosine: significance of histidine. Life Sci.
2004, 75, 1379–1389.
(13) Pegova, A.; Abe, H.; Boldyrev, A. Hydrolysis of carnosine and
related compounds by mammalian carnosinases. Comp. Biochem.
Physiol., Part B: Biochem. Mol. Biol. 2000, 127, 443–446and
references therein .
(14) Lenney, J. F.; George, R. P.; Weiss, A. M.; Kucera, C. M.; Chan,
P. W.; Rinzier, G. S. Human serum carnosinase: characterisation,
distinction from cellular carnosinase, and activation by cadmium.
Clin. Chim. Acta 1982, 123, 221–231.
(32) Sayre, L. M.; Perry, G.; Smith, M. A. Oxidative Stress and
Neurotoxicity. Chem. Res. Toxicol. 2008, 21, 172–188.
(33) Hayashi, T.; Shisido, N.; Nakayama, K.; Nunomura, A.; Smith,
M. A.; Perry, G.; Nakamura, M. Lipid peroxidation and 4-hydro-
xy-2-nonenalformation by copperion boundto amyloid-β peptide.
Free Radical Biol. Med. 2007, 43, 1552–1559.
(34) Bennet, S.; Grant, M. M.; Aldred, S. Oxidative Stress in Vascular
Dementia and Alzheimer’s Disease: A Common Pathology.
J. Alzheimer’s Dis. 2009, 17, 245–257.
(35) Aldred, S.; Bennet, S.; Mecocci, P. Increased low-density lipopro-
tein oxidation, but not total plasma protein oxidation, in Alzhei-
mer’s disease. Clin. Biochem. 2010, 43, 267–271.
(36) Li, L.; Willets, R. S.; Polidori, M. C.; Stahl, W.; Nelles, G.; Sies, H.;
Griffiths, H. R. Oxidative LDL modification is increased in
vascular dementia and is inversely associated with cognitive per-
formance. Free Radical Res. 2010, 44, 241–248.
(15) Vistoli, G.; Pedretti, A.; Cattaneo, M.; Aldini, G.; Testa, B.
Homology Modeling of Human Serum Carnosinase, a Potential
Medicinal Target, and MD Simulations of its Allosteric Activation
by Citrate. J. Med. Chem. 2006, 49, 3269–3277.
(37) Bogardus, S. L.; Boissonneault, G. A. Carnosine inhibits in vitro
low density lipoprotein oxidation. Nutr. Res. (N. Y., NY, U.S.)
2000, 20, 967–976.
(38) Pinchuk, I.; Lichtenberg, D. The mechanism of action of antiox-
idants against lipoprotein peroxidation, evaluation based on ki-
netic experiments. Prog. Lipid Res. 2002, 41, 279–314.
(39) Kuzuya, M.; Yamada, K.; Hayashi, T.; Funaki, C.; Naito, M.;
Asai, K.; Kuzuya, F. Role of lipoprotein-copper complex in
copper-catalysed peroxidation of low-density lipoprotein. Bio-
chem. Biophys. Acta 1992, 1123, 334–341.
(16) Pedretti, A.; De Luca, L.; Marconi, C.; Negrisoli, G.; Aldini, G.;
Vistoli, G. Modeling of the Intestinal Peptide Transporter hPepT1
and Analysis of its Transport Capacities by Docking and Pharma-
cophore Mapping. ChemMedChem 2008, 3, 1913–1921.
(17) Kovalainen, J. T.; Christiaans, J. A. M.; Kotisaari, S.; Laitinen,
€
€
J. T.; Mannisto, P. T.; Tuomisto, L.; Gynther, J. Synthesis and in
Vitro Pharmacology of a Series of New Chiral Histamine H3-
Receptor Ligands: 2-(R and S)-Amino-3-(1H-imidazol-4(5)-
yl)propyl Ether Derivatives. J. Med. Chem. 1999, 42 (7), 1193–
1202.
(18) Babizhayev, M. A.; Courbebassie, Y.; Nicolay, J.-F.; Semiletov,
Y. A. Design and biological activity of imidazole-containing
peptidomimetics with a broad-spectrum antioxidant activity. Lett.
Pept. Sci. 1998, 5, 163–169.
(40) Patel, R. P.; Svistunenko, D.; Wilson, M. T.; Darley-Usmar, V. M.
Reduction of Cu(II) by lipid hydroperoxides: implications for the
copper-dependent oxidation of low density lipoprotein. Biochem.
J. 1997, 322, 425–433.
(41) Mark, R. J.; Lovell, M. A.; Markesbery, W. R.; Uchida, K.;
Mattson, M. P. A role for 4-hydroxynonenal, an aldehydic product
of lipid peroxidation, in disruption of ion homeostasis and neuro-
nal death induced by amyloid betapeptide. J. Neurochem. 1997, 68,
255–264.
(19) Babyzhayev, M. A. Biological activities of the natural imidazole-
containing peptidomimetics n-acetylcarnosine, carcinine and
L-carnosine in ophthalmic and skin care products. Life Sci.
2006, 78, 2343–2357.
ꢀ
(20) Calcagni, A.; Ciattini, P. G.; Di Stefano, A.; Dupre, S.; Luisi, G.;
Pinnen, F.; Rossi, D.; Spirito, A. Φ(SO2NH) transition state
isosteres of peptides. Synthesis and bioactivity of sulfonamido
pseudopeptides related to carnosine. Farmaco 1999, 54, 673–677.
(21) Cacciatore, I.; Cocco, A.; Costa, M.; Fontana, M.; Lucente, G.;
Pecci, L.; Pinnen, F. Biochemical properties of new synthetic
carnosine analogues containing the residue of 2,3-diaminopro-
pionic acid: the effect of N-acetylation. Amino Acids 2005, 28,
77–83.
(22) Attanasio, F.; Cataldo, S.; Fisichella, S.; Nicoletti, S.; Nicoletti,
V. G.; Pignataro, B.; Savarino, A.; Rizzarelli, E. Protective Effects
of L- and D-Carnosine on R-Crystallin Amyloid Fibril Formation:
Implications for Cataract Disease. Biochemistry 2009, 48, 652–
6531.
(23) Vistoli, G.; Orioli, M.; Pedretti, A.; Regazzoni, A.; Canevotti, R.;
Negrisoli, G.; Carini, M.; Aldini, G. Design, synthesis, and evalua-
tion of carnosine derivatives as selective and efficient sequestering
agents of cytotoxic reactive carbonyl species. ChemMedChem.
2009, 4, 1–10.
(24) La Mendola, D.; Sortino, S.; Vecchio, G.; Rizzarelli, E. Synthesis
of New Carnosine Derivatives of β-Cyclodextrin and Their Hydro-
xyl Radical Scavenger Ability. Helv. Chim. Acta 2002, 85, 1633–
1643.
(42) Butterfield, D. A.; Castegna, A.; Lauderback, C. M.; Drake, J.
Evidence that amyloid beta-peptide-induced lipid peroxidation
and its sequelae in Alzheimer’s disease brain contribute to neuronal
death. Neurobiol. Aging 2002, 23, 655–664.
(43) Rabacchi, S. A.; Friedman, W. J.; Shelanski, M. L.; Troy, C. M.
Divergence of the apoptotic pathways induced by 4-hydroxynone-
nal and amyloid beta-protein. Neurobiol. Aging 2004, 25, 1057–
1066.
(44) Keller, J. N.; Hanni, K. B.; Markesbery, W. R. 4-Hydroxynonenal
increases neuronal susceptibility to oxidative stress. J. Neurosci.
Res. 1999, 58, 823–830.
(45) Ando, Y.; Brannstrom, T.; Uchida, K.; Nyhlin, N.; Nasman, B.;
Suhr, O.; Yamashita, T.; Olsson, T.; El Salhy, M.; Uchino, M.;
Ando, M. Histochemical detection of 4-hydroxynonenal protein in
Alzheimer amyloid. J. Neurol. Sci. 1998, 156, 172–176.
(46) Sayre, L. M.; Zelasko, D. A.; Harris, P. L.; Perry, G.; Salomon,
R. G.; Smith, M. A. 4-Hydroxynonenal-derived advanced lipid
peroxidation end products are increased in Alzheimer’s disease.
J. Neurochem. 1997, 68, 2092–2097.
(47) Takeda, A.; Smith, M. A.; Avila, J.; Nunomura, A.; Siedlak, S. L.;
Zhu, X.; Perry, G.; Sayre, L. M. In Alzheimer’s disease, heme
oxygenase is coincident with Alz50, an epitope of tau induced by