staining agent for living cells in physiological conditions.
Further, the use of biologically benign a-CD enhances the
solubility in water and HEPES buffer (pH = 7.2) and thereby
the staining efficiency. The stained microbial cell could be seen
distinctly through a light microscope. Examples of such a non-
toxic colorimetric staining agent that works completely in
physiological conditions are extremely rare in the literature.
DST and CSIR have supported this work. PM, AG, SKM
and AS acknowledge CSIR for fellowships.
Fig. 4 Images of S. cerevisiae cells: Light microscopic images of (A)
unstained cells, (B) cells stained with L.Zn (0.66 ꢃ 10ꢁ4 M) and (C)
a-CD.L.Zn [L.Zn (5.0 ꢃ 10ꢁ4 M) and a-CD (5.0 ꢃ 10ꢁ3 M)] at 25 1C in
10 mM HEPES buffer solution (pH = 7.2); SEM images of (D) yeast
cells, (E) yeast cells treated with L.Zn (0.66 ꢃ 10ꢁ4 M).
Notes and references
then gets excreted to the cell surface.13 We have used the yeast
cells, Saccharomyces cerevisiae (S. cerevisiae) in 10 mM
HEPES buffer solution (pH = 7.2) for our studies. The
images of the colorless yeast cells, viewed under a normal
light microscope (AXIO IMAGER-Carl Zeiss), are shown in
Fig. 4A; while images of the yeast cells exposed to the reagents
L.Zn (for B5 min) and a-CD.L.Zn (for B2 min) are shown in
Fig. 4B and C. Control experiments with yeast cells exposed
separately to Zn(NO3)2 and L did not produce any change in
colour. These observations together revealed that S. cerevisiae
cells could be stained with L.Zn or a-CD.L.Zn, and the colour
of the cells changed to pink-red. Further, for a-CD.L.Zn, the
higher solubility allows a higher local concentration of the
L.Zn and thus a more effective binding to the ATP, produced
in situ in the cell surface and thereby better staining of the
yeast cells.
z Patent application details: 0093NF2009 [1242DEL2010], 24.05.2010.
1 (a) T. Hunter, in Protein Phosphorylation, ed. B. M. Sefton,
Academic Press, New York, 1998; (b) T. Pawson and J. D. Scott,
Trends Biochem. Sci., 2005, 30, 286; (c) L. N. Johnson and
R. J. Lewis, Chem. Rev., 2001, 101, 2209; (d) M. B. Yaffe,
Nat. Rev. Mol. Cell Biol., 2002, 3, 177; (e) M. B. Yaffe and A. E. H.
Elia, Curr. Opin. Cell Biol., 2001, 13, 131.
2 J. R. Knowles, ‘‘Enzyme-catalyzed phosphoryl transfer reactions’’,
Annu. Rev. Biochem., 1980, 49, 877.
3 C. P. Mathews and K. E. van Hold, Biochemistry, The Benjamin/
Cumings Publishing Co. Inc., Redwood City, CA, 1990.
4 K. T. Bush, S. H. Keller and S. K. Nigam, J. Clin. Invest., 2000,
106, 621.
5 (a) B. S. Khakh and R. A. North, Nature, 2006, 442, 527;
(b) S. K. Kim, D. H. Lee, J.-I. Hong and J. Yoon, Acc. Chem.
Res., 2009, 42, 23; (c) T. Ramero, A. Caballero, A. Tarraga and
P. Molina, Org. Lett., 2009, 11, 3466; (d) D. A. Jose, S. Stadlbauer
and B. Konig, Chem.–Eur. J., 2009, 15, 7404; (e) Z. Yao, X. Feng,
W. Hong, C. Li and G. Shi, Chem. Commun., 2009, 4696;
(f) S. Wang and Y.-T. Chang, J. Am. Chem. Soc., 2006, 128, 10380.
6 (a) T. Sakamoto, A. Ojida and I. Hamachi, Chem. Commun., 2009,
141 and references therein; (b) B. Smith, W. J. Akers, W. M. Levvy,
A. J. Lampkins, S. Xiao, W. Wolter, M. A. Suckow, S. Achielefu
and B. D. Smith, J. Am. Chem. Soc., 2010, 132, 67; (c) H.-W. Rhee,
C.-R. Lee, S.-H. Cho, M.-R. Song, M. Cashel, H. E. Choy,
Y.-J. Seok and J.-I. Hong, J. Am. Chem. Soc., 2008, 130, 784;
Further yeast cells, stained with L.Zn, became colorless
when treated with citrate ion (5.0 ꢃ 10ꢁ4 M) in 10 mM
HEPES buffer solution. This confirms the reversible in vivo
binding of ATP to the Zn(II)-centre of L.Zn. SEM images of
blank and stained eukaryote (yeast) cells have been recorded
(Fig. 4D and E) to reveal the change(s) in the morphology of
the outer surface of the cells on binding to L.Zn. SEM images
of yeast cells without the dye were found to be smooth in
contrast to the images of the yeast cells with dye, where stained
cell surfaces were found to be rough. This agrees well with the
literature report that negatively charged ATP is concentrated
on the cell surfaces.14 This revealed the presence of the L.Zn,
on the cell surface.
(d) M. Schaferling and O. S. Wolfbeis, Chem.–Eur. J., 2007, 13,
¨
4342; (e) S. Mizukami, T. Nagano, Y. Urano, Y. Odani and
K. Kikuchi, J. Am. Chem. Soc., 2002, 124, 3920.
7 (a) A. J. Moro, P. J. Cywinski, S. Korsten and G. J. Mohr, Chem.
Commun., 2010, 46, 1085; (b) A. Ojida, H. Nonaka, Y. Miyahara,
S.-i. Tamaru, K. Sada and I. Hamachi, Angew. Chem., Int. Ed.,
2006, 45, 5518; (c) E. J. O’Neil and B. D. Smith, Coord. Chem. Rev.,
2006, 250, 3068.
8 (a) A. Ghosh, A. Shrivastav, D. A. Jose, S. K. Mishra,
C. K. Chandrakanth, S. Mishra and A. Das, Anal. Chem., 2008,
80, 5312; (b) D. A. Jose, S. Mishra, A. Ghosh, A. Shrivastav,
S. K. Mishra and A. Das, Org. Lett., 2007, 9, 1979.
9 (a) L. F. Lindloy and D. H. Busch, Inorg. Chem., 1974, 13, 2494;
(b) D. Wester and G. J. Palenik, J. Am. Chem. Soc., 1974, 95, 6505.
10 H. R. Horton, L. A. Moran, K. G. Scrimgeour, M. D. Perry and
J. D. Rawn, Principles of Biochemistry, Prentice Hall, NJ, USA, 2006.
11 (a) R. S. Wylie and D. H. Macartney, Inorg. Chem., 1993, 32, 1830;
(b) A. J. Baer and D. H. Macartney, Inorg. Chem., 2000, 39, 1410;
(c) G. Wenz, Angew. Chem., Int. Ed. Engl., 1994, 33, 803;
(d) A. D. Shukla, H. C. Bajaj and A. Das, Angew. Chem., Int.
Ed., 2001, 40, 446; (e) A. D. Shukla, H. C. Bajaj and A. Das, Proc.
Indian Acad. Sci., Chem. Sci., 2002, 114, 431.
Finally, the cell growth, cell division, as well as the viability
of the yeast cells in presence of these two staining agents were
observed when the stained cell suspension was viewed on a
concavity slide by light microscope (Fig. 5). Cell division and
growth in presence of L.Zn and a-CD.L.Zn confirms the
possibility of using these reagents as viable staining agents
for studies on cell growth dynamics, which has significance in
terms of the application potential in environmental studies and
food industries.
In conclusion, we have successfully demonstrated that an
easily synthesizable Zn(II)-reagent could be used as a viable
12 (a) K. A. Connors, Chem. Rev., 1997, 97, 1325 and references
therein; (b) S. A. Nepogodiev and J. F. Stoddart, Chem. Rev., 1998,
98, 1959; (c) P. Siddarth and R. A. Marcus, J. Phys. Chem., 1990,
94, 2985.
13 (a) W. M. Leevy, J. R. Johnson, C. Lakshmi, J. Morris,
M. Marquez and B. D. Smith, Chem. Commun., 2006, 1595;
(b) J. L. Gordon, Biochem. J., 1986, 233, 309.
14 (a) D. L. Nelson and M. M. Cox, Lehninger: Principles of
Biochemistry, Worth Publishers, NY, 3rd edn, 2003;
(b) D. H. Bergey, G. H. John, R. K. Noel and H. A. S. Peter,
Bergey’s Manual of Determinative Bacteriology, Lippincott
Williams & Wilkins, 9th edn, 1994.
Fig. 5 Light microscopic image of S. cerevisiae in presence of L.Zn
and a-CD.L.Zn in 10 mM HEPES buffer at different time intervals.
c
9136 Chem. Commun., 2010, 46, 9134–9136
This journal is The Royal Society of Chemistry 2010