In conclusion, four InsP3 derivatives with phosphate bio-
isosteres at the 5-position have been synthesised. Biological
evaluation of these compounds has revealed the methyl
phosphate ester (2) and sulfate (5) derivatives retain InsP3R
agonist activity. However, the methylphosphonate (3) and
carboxymethyl (4) derivatives behave as InsP3R antagonists.
These studies provide the first proof that InsP3 derivatives can
act as antagonists at InsP3Rs. The compounds developed
herein will likely prove useful tools for the study of InsP3Rs
and provide new insight into the mechanism of InsP3R
activation and inhibition.
The authors thank the University of St Andrews (DB) and
the BBSRC (NSK, TA) for funding. SJC thanks St Hugh’s
College, Oxford, for research support.
Fig. 2 Fractional loss plots of 45Ca2+ in L15 cells when treated with
the methylphosphonate analogue 3. The cells were permeabilised,
leading to an initial loss of 45Ca2+ (0–3 min). Application of InsP3
evokes a large loss of 45Ca2+ as a result of InsP3R activation. This loss
of 45Ca2+ is reduced by B40% in the presence of the methyl-
phosphonate 3 (300 mM), indicating that this compound is behaving
as an InsP3R antagonist.
Notes and references
z MEF cells are immortalised wild-type mouse embryonic fibroblast
cells expressing normal levels of InsP3R1 and InsP3R3. L15 cells are
mouse L-fibroblast cells stably over-expressing InsP3R1 by B8–10 fold.
8 Sea urchin eggs possess only one subtype of InsP3R.
1 M. J. Berridge, M. D. Bootman and H. L. Roderick, Nat. Rev.
Mol. Cell Biol., 2003, 4, 517.
2 M. J. Berridge, Biochim. Biophys. Acta, 2009, 1793, 933.
3 B. V. L. Potter and D. Lampe, Angew. Chem., Int. Ed. Engl., 1995,
34, 1933.
4 S. J. Conway and G. J. Miller, Nat. Prod. Rep., 2007, 24, 687.
5 A. M. Rossi, A. M. Riley, S. C. Tovey, T. Rahman, O. Dellis, E. J. A.
Taylor, V. G. Veresov, B. V. L. Potter and C. W. Taylor, Nat. Chem.
Biol., 2009, 5, 631.
6 S. T. Safrany, R. A. Wilcox, C. Liu, D. Dubreuil, B. V. L. Potter
and S. R. Nahorski, Mol. Pharmacol., 1993, 43, 499.
7 C. E. Dreef, J. P. Jansze, C. J. J. Elie, G. A. van der Marel and
J. H. van Boom, Carbohydr. Res., 1992, 234, 37.
8 C. E. Dreef, W. Schiebler, G. A. van der Marel and J. H. van
Boom, Tetrahedron Lett., 1991, 32, 6021.
Fig. 3 Compounds 3 and 4 inhibit IICR. (A) A representative trace
obtained from sea urchin egg homogenate loaded with the fluorescent
Ca2+ dye Fluo-3. Application of InsP3 (400 nM) evokes an increase in
fluorescence due to Ca2+ release from InsP3Rs (black trace). Applica-
tion of compound 4 (5.00 mM) alone does not cause Ca2+ release,
however, application of InsP3 (400 nM) in the presence of 4 evokes
significantly reduced Ca2+ release, demonstrating that 4 is an InsP3R
antagonist (grey trace). (B) A comparison of the Ca2+ release evoked
by InsP3 alone and in the presence of compound 3 or compound 4.
The Ca2+ release caused by InsP3 (400 nM) alone is taken as 100%
(top bar). When InsP3 (400 nM) and compound 3 (1.67 mM) were
applied to the sea urchin egg homogenate, a smaller increase in
fluorescence (63%, n = 4) was observed (middle bar), consistent with
reduced Ca2+ release from InsP3Rs. When InsP3 and compound 4
(5.00 mM) were applied a similarly reduced increase in fluorescence
was seen (42%, n = 4, bottom bar). These data show that both 3 and 4
are acting as InsP3R antagonists. Error bars show SEM.
9 T. Maruyama, T. Kanaji, S. Nakade, T. Kanno and K. Mikoshiba,
Jpn. J. Biochem., 1997, 122, 498.
10 J. G. Bilmen, L. L. Wootton, R. E. Godfrey, O. S. Smart and
F. Michelangeli, Eur. J. Biochem., 2002, 269, 3678.
11 M. D. Bootman, T. J. Collins, L. Mackenzie, H. L. Roderick,
M. J. Berridge and C. M. Peppiatt, FASEB J., 2002, 16, 1145.
12 C. M. Peppiatt, T. J. Collins, L. Mackenzie, S. J. Conway,
A. B. Holmes, M. D. Bootman, M. J. Berridge, J. T. Seo and
H. L. Roderick, Cell Calcium, 2003, 34, 97.
13 I. Bosanac, J. R. Alattia, T. K. Mal, J. Chan, S. Talarico,
F. K. Tong, K. I. Tong, F. Yoshikawa, T. Furuichi, M. Iwai,
T. Michikawa, K. Mikoshiba and M. Ikura, Nature, 2002, 420, 696.
14 C. W. Taylor, P. C. A. da Fonseca and E. P. Morris, Trends
Biochem. Sci., 2004, 29, 210.
15 D. Bello, T. Aslam, G. Bultynck, A. M. Z. Slawin, H. L. Roderick,
M. D. Bootman and S. J. Conway, J. Org. Chem., 2007, 72, 5647.
16 G. F. Painter, S. J. A. Grove, I. H. Gilbert, A. B. Holmes,
P. R. Raithby, M. L. Hill, P. T. Hawkins and L. R. Stephens,
J. Chem. Soc., Perkin Trans. 1, 1999, 923.
17 S. J. Conway, J. Gardiner, S. J. A. Grove, M. K. Johns, Z. Y. Lim,
G. F. Painter, D. Robinson, C. Schieber, J. W. Thuring,
L. S. M. Wong, M. X. Yin, A. W. Burgess, B. Catimel,
P. T. Hawkins, N. T. Ktistakis, L. R. Stephens and
A. B. Holmes, Org. Biomol. Chem., 2010, 8, 66.
to the InsP3R ligand-binding domain in a similar orientation
to InsP3. The methyl phosphate ester (2) and the sulfate (5)
derivatives have the same number of atoms as a phosphate
group (such as in InsP3) from which to make polar contacts.
However, the methylphosphonate (3) and the carboxylate (4)
have one less polar atom at the 5-position. It is possible
that this reduced interaction with the receptor renders the
compounds unable to evoke the conformation change required
for InsP3R activation, and hence 3 and 4 act as competitive
antagonists at InsP3Rs.
18 P. H. J. Carlsen, T. Katsuki, V. S. Martin and K. B. Sharpless,
J. Org. Chem., 1981, 46, 3936.
19 C. S. Liu and B. V. L. Potter, J. Org. Chem., 1997, 62, 8335.
20 N. S. Keddie, G. Bultynck, T. Luyten, A. M. Z. Slawin and
S. J. Conway, Tetrahedron: Asymmetry, 2009, 20, 857.
21 D. L. Clapper, T. F. Walseth, P. J. Dargie and H. C. Lee, J. Biol.
Chem., 1987, 262, 9561.
22 A. Galione, S. Patel and G. C. Churchill, Biol. Cell, 2000, 92, 197.
23 A. J. Morgan and A. Galione, Methods, 2008, 46, 194.
c
244 Chem. Commun., 2011, 47, 242–244
This journal is The Royal Society of Chemistry 2011