Journal of the American Chemical Society
ARTICLE
this observation, we only used this [18F]4-FGln tracer in our
further investigations. In vitro cell uptake inhibition studies were
conducted in 9L cells in order to test the specificity of this
radiotracer (Figure 10). Two natural amino acids, L-Gln and
L-serine, served as the positive control inhibitors for the Gln
transporters. L-Gln inhibits the system N transporter and L-serine
inhibits the ASC transporter. Three different concentrations
were tested for each inhibitor ranging from 0.5 to 5 mM. After
30 min of coincubation of L-Gln and [18F]4-FGln, 1 (2S,4R), the
system N transporter was clearly inhibited. The results showed
nearly 90% inhibition (0.49% dose/100 μg protein inhibited vs
control 3.56% dose/100 μg protein). L-Serine also showed con-
siderable inhibition (1.41% inhibited vs control 3.56% dose/
100 μg protein) of the ASC transporter. MeAIB, which inhibits
the system A transporter, served as the negative control. At a con-
centration of 5 mM, there was little or no effect on the system A
transport system (3.69% inhibited vs control 3.56% dose/100 μg
protein). The results clearly demonstrate a dose-dependent
response to L-Gln and L-serine, with MeAIB showing no inhibi-
tion of the system A transport system.
’ ACKNOWLEDGMENT
We thank Stand Up 2 Cancer (SU2C) for financial support.
Authors thank Dr. Chaitanya Divgi for helpful discussions. Authors
also want to thank Dr. Carita Huang for her editorial assistance.
’ REFERENCES
(1) Jaeckel, C.; Koksch, B. Eur. J. Org. Chem. 2005, 4483.
(2) Meng, H.; Kalsani, V.; Kumar, K. ACS Symp. Ser. 2007, 949, 487.
(3) Jaeckel, C.; Salwiczek, M.; Koksch, B. Angew. Chem., Int. Ed.
2006, 45, 4198.
(4) Meng, H.; Kumar, K. J. Am. Chem. Soc. 2007, 129, 15615.
(5) Zheng, H.; Comeforo, K.; Gao, J. J. Am. Chem. Soc. 2009, 131, 18.
(6) Chiu, H.-P.; Kokona, B.; Fairman, R.; Cheng, R. P. J. Am. Chem.
Soc. 2009, 131, 13192.
(7) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
(8) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc.
Rev. 2008, 37, 320.
(9) Mercer, J. R. J. Pharm. Pharm. Sci. 2007, 10, 180.
(10) McConathy, J.; Goodman Mark, M. Cancer Metastasis Rev.
2008, 27, 555.
Additional biological evaluation of the most promising Gln
analogue [18F]4-FGln, 1 (2S,4R) isomer in normal and tumor
bearing mice by PET imaging and biodistribution demonstrated that
the Gln tracer indeed localized in the tumor tissue in vivo (data not
shown). These results, which will be reported in other publications,
further support our findings that the new L-Gln analogue, [18F]4-
FGln, 1 (2S,4R), is metabolized by tumor tissue.
(11) Schuster, D. M.; Votaw, J. R.; Nieh, P. T.; Yu, W.; Nye, J. A.;
Master, V.; Bowman, F. D.; Issa, M. M.; Goodman, M. M. J. Nucl. Med.
2007, 48, 56.
(12) Laverman, P.; Boerman, O. C.; Corstens, F. H. M.; Oyen,
W. J. G. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 681.
(13) Jager, P. L.; Vaalburg, W.; Pruim, J.; de Vries, E. G.; Langen,
K. J.; Piers, D. A. J. Nucl. Med. 2001, 42, 432.
(14) Plathow, C.; Weber, W. A. J. Nucl. Med. 2008, 49 (Suppl. 2), 43S.
(15) Wise, D. R.; DeBerardinis, R. J.; Mancuso, A.; Sayed, N.; Zhang,
X.-Y.; Pfeiffer, H. K.; Nissim, I.; Daikhin, E.; Yudkoff, M.; McMahon,
S. B.; Thompson, C. B. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 18782.
(16) DeBerardinis, R. J.; Lum, J. J.; Hatzivassiliou, G.; Thompson,
C. B. Cell Metab. 2008, 7, 11.
(17) Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B. Science
2009, 324, 1029.
(18) Thompson, C. B. N. Eng. J. Med. 2009, 360, 813.
(19) Gao, P.; Tchernyshyov, I.; Chang, T. C.; Lee, Y. S.; Kita, K.;
Ochi, T.; Zeller, K. I.; De Marzo, A. M.; Van Eyk, J. E.; Mendell, J. T.;
Dang, C. V. Nature 2009, 458, 762.
’ CONCLUSIONS
In summary, a new synthetic pathway to 4-FGln derivatives
was developed. The synthesis of all four optically pure 4-FGln was
accomplished using a Passerini three-component reaction and
“neutralized” TASF nucleophilic fluorination reaction as key steps.
In addition, tosylates 24, 25, 35, and 36, which are suitable
precursors for 18F radio-fluorination reactions, were synthesized
on grams scale. It is reasonable to postulate that this synthetic
method could be used to synthesize various functional group
substituted (at the 4-position) and optically enriched Gln or
glutamic acid analogues, since fluoro-substituted functionalization,
one of the hardest functionalization processes, has been per-
formed. In addition, we successfully accomplished the syntheses
of four stereoisomeric 18F 4-FGlns, [18F]1, [18F]2, [18F]3, and
[18F]4. In vitro cell uptake studies (9L tumor cells) suggest that
uptake is highly specific for two of the L-Gln analogues, [18F]1
(2S,4R) and [18F]2 (2S,4S), and it is likely associated with the
native L-Gln transporters. Between them, [18F]1 (2S,4R) was
selected as the leading probe for further biological evaluation. We
hope that the successful development of this new metabolic probe
for the detection of glutaminolysis will contribute to the advance-
ment of cancer diagnosis and therapy.
(20) Dang, C. V. Cancer Res. 2010, 70, 859.
(21) Qiu, X.-L.; Meng, W.-D.; Qing, F.-L. Tetrahedron 2004, 60, 6711.
(22) Smits, R.; Cadicamo, C. D.; Burger, K.; Koksch, B. Chem. Soc.
Rev. 2008, 37, 1727.
(23) Pigza, J. A.; Quach, T.; Molinski, T. F. J. Org. Chem. 2009, 74, 5510.
(24) Hu, Z.; Han, W. Tetrahedron Lett. 2008, 49, 901.
(25) Padmakshan, D.; Bennett, S. A.; Otting, G.; Easton, C. J. Synlett
2007, 1083.
(26) Li, G.; van der Donk, W. A. Org. Lett. 2007, 9, 41.
(27) Suzuki, A.; Mae, M.; Amii, H.; Uneyama, K. J. Org. Chem. 2004,
69, 5132.
(28) Hoveyda, H. R.; Pinault, J.-F. Org. Lett. 2006, 8, 5849.
(29) Chorghade, M. S.; Mohapatra, D. K.; Sahoo, G.; Gurjar, M. K.;
Mandlecha, M. V.; Bhoite, N.; Moghe, S.; Raines, R. T. J. Fluorine Chem.
2008, 129, 781.
(30) Charrier, J.-D.; Hadfield, D. S.; Hitchcock, P. B.; Young, D. W.
Org. Biomol. Chem. 2004, 2, 797.
’ ASSOCIATED CONTENT
(31) Charrier, J.-D.; Hadfield, D. S.; Hitchcock, P. B.; Young, D. W.
Org. Biomol. Chem. 2004, 2, 474.
(32) Charrier, J.-D.; Hitchcock, P. B.; Young, D. W. Org. Biomol.
Chem. 2004, 2, 1310.
(33) Qiu, X.-L.; Meng, W.-D.; Qing, F.-L. Tetrahedron 2004, 60,
5201.
S
Supporting Information. Full experimental procedures
b
and data, 1H/13CNMR spectra of new compounds, HPLC
profiles and reported X-ray structural data. This material is
(34) Yajima, T.; Nagano, H. Org. Lett. 2007, 9, 2513.
(35) Mykhailiuk, P. K.; Afonin, S.; Chernega, A. N.; Rusanov, E. B.;
Platonov, M. O.; Dubinina, G. G.; Berditsch, M.; Ulrich, A. S.; Komarov,
I. V. Angew. Chem., Int. Ed. 2006, 45, 5659.
’ AUTHOR INFORMATION
Corresponding Author
wenchao@mail.med.upenn.edu; kunghf@sunmac.spect.upenn.edu
1132
dx.doi.org/10.1021/ja109203d |J. Am. Chem. Soc. 2011, 133, 1122–1133