Journal of the American Chemical Society
COMMUNICATION
yield in the ratio 1.6:1. The more acidic C-H bond on the
fluoro-substituted arene is preferentially activated, although the
selectivity is reduced relative to that seen with the previous seven-
membered systems (Chart 1, 2d and 2d0).
(j) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254–
9256. (k) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 9651–
9653. (l) Zhao, X.; Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010,
132, 5837–5844. (m) Yeung, C. S.; Zhao, X.; Borduas, N.; Dong, V. M.
Chem. Sci. 2010, 1, 331–336. (n) Xi, P.; Yang, F.; Qin, S.; Zhao, D.; Lan,
J.; Gao, G.; Hu, C.; You, J. J. Am. Chem. Soc. 2010, 132, 1822–1824.
(o) Potavathri, S.; Pereira, K. C.; Gorelsky, S. I.; Pike, A.; LeBris, A. P.;
DeBoef, B. J. Am. Chem. Soc. 2010, 132, 14676–14681.
(3) (a) Shiotani, A.; Itatani, H. Angew. Chem., Int. Ed. 1974, 13, 471–
472. (b) Akermark, B.; Eberson, L.; Jonsson, E.; Petterson, E. J. Org.
Chem. 1975, 40, 1365–1367. (c) Hideo, I.; Yoshifumi, Y.; Kibayashi, C.
J. Org. Chem. 1980, 45, 2938–2942. (d) Ames, D. E.; Opalko, A.
Tetrahedron 1984, 40, 1919–1925.
(4) Recent examples: (a) Watanabe, T.; Ueda, S.; Inuki, S.; Oishi, S.;
Fujii, N.; Ohno, H. Chem. Commun. 2007, 4516–4518. (b) Liegault, B.; Lee,
D.; Huestis, M. P.; Stuart, D. R.; Fagnou, K. J. Org. Chem. 2008, 73, 5022–
5028. (c) Wurtz, S.; Rakshit, S.; Neumann, J. J.; Droge, T.; Glorius, F. Angew.
Chem., Int. Ed. 2008, 47, 7230–7233. (d) Watanabe, T.; Oishi, S.; Fujii, N.;
Ohno, H. J. Org. Chem. 2009, 74, 4720–4726. (e) Kn€olker, H.-J. Chem. Lett.
2009, 38, 8–13. (f) Ackermann, L.; Jeyachandran, R.; Potukuchi, H. K.;
Novꢀak, P.; Buttner, L. Org. Lett. 2010, 12, 2056–2059. See also ref 2m
(5) The benzodiazepine motif and related congeners are prominent
examples of medium (seven)-ring systems in drug molecules. Aside from
this class, seven-, eight-, and nine-membered-ring systems are rare in
current marketed drugs. Review: Majhi, T. P.; Achari, B.; Chattopad-
hyay, P. Heterocycles 2007, 71, 1011–1052.
A preliminary picture of the reaction mechanism is set out in
Scheme 1. Palladation of the indole at C2 forms complex I, an
intermediate that could be successfully trapped with methyl
acrylate in a Fujiwara-Moritani-type process12 to give ester 8
(Supporting Information). In the normal course of reaction, I
then undergoes a concerted metalation-deprotonation (CMD)13
step to afford intermediate II. An alternative electrophilic palla-
dation mechanism is unlikely here due to the observed selectiv-
ities for electron-poor sites in competition experiments (2d in
Chart 1 and 6g/6f in Chart 3).14 In addition, an intramolecular
kinetic isotope effect (KIE) study on substrate 1g-H/D gave a
value of kH/kD = 3.3, in line with literature reports of C-H
activation via CMD mechanisms.4c,15,16 Reductive elimination
then produces the medium-ring products, along with Pd(0)
which is reoxidized by the excess Cu(II) in the reaction.
In conclusion, we have shown for the first time that intramol-
ecular oxidative C-H coupling is an effective strategy for synthe-
sizing medium-ring compounds. The reaction is tolerant of a rich
array of functional groups, forming annulated heterocycles for
application as versatile scaffolds in medicinal chemistry17,18
Previous routes to these medium-ring-containing indoles have
featured lengthy, multistep routes; our approach is rapid, using a
simple catalyst system, and should be amenable to a broad range
of further applications in medium-ring heterocycle synthesis.
(6) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48,
9608–9644.
(7) The reaction conditions were effective for six-membered-ring
formation. The six-membered analogue of 2a was isolated in 87% yield
using the same procedure (Supporting Information).
(8) Shen, K.; Fu, Y.; Li, J.-N.; Liu, L.; Guo, Q.-X. Tetrahedron 2007,
63, 1568–1576.
’ ASSOCIATED CONTENT
(9) Li, C.-J. Acc. Chem. Res. 2009, 42, 335–344.
S
Supporting Information. Experimental procedures and
b
(10) Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95–102.
(11) Shabashov, D.;Daugulis, O.J. Am. Chem. Soc. 2010, 132, 3965–3972.
(12) (a) Fujiwara, Y.; Maruyama, O.; Yoshidomi, M.; Taniguchi, H.
J. Org. Chem. 1981, 46, 851–855. (b) Grimster, N. P.; Gauntlett, C.;
Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem., Int. Ed. 2005, 44, 3125–3129.
(13) (a) Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am.
Chem. Soc. 2005, 127, 13754–13755. (b) Garcıa-Cuadrado, D.; de
Mendoza, P.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am.
Chem. Soc. 2007, 129, 6880–6886. (c) Gorelsky, S. I.; Lapointe, D.;
Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848–10849.
characterization data for all new compounds (PDF, CIF). This
acs.org.
’ AUTHOR INFORMATION
Corresponding Author
(14) We note that Gorelsky and co-workers13c have identified C-H
bond length, rather than C-H acidity, as the governing influence in CMD
mechanisms for the intermolecular arylation of arenes with aryl bromides.
(15) (a) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc.
2007, 129, 9879–9884. (b) Li, J. J.; Giri, R.; Yu, J. Q. Tetrahedron 2008,
64, 6979–6987. (c) Deprez, N. R.; Sanford, M. S. J. Am. Chem. Soc. 2009,
131, 11234–11241.
’ ACKNOWLEDGMENT
We thank the EPSRC and the University of Edinburgh for
funding (Leadership fellowship to M.F.G. and studentship to
D.G.P.) and the EPSRC mass spectrometry service at Swansea.
Dr. Fraser White is thanked for X-ray crystallography.
(16) Intermolecular KIEs between 2.0 and 2.5 were observed for 1g
deuterated at the sites of indole and aryl C-H activation. See Support-
ing Information for details.
’ REFERENCES
(1) (a) Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540–548.
(b) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed.
2009, 48, 9792–9826. (c) Chen, X.; Engle, K.; Wang, D. H.; Yu, J. Q.
Angew. Chem., Int. Ed. 2009, 48, 5094–5115.
(17) (a) Stansfield, I.; Ercolani, C.; Mackay, A.; Conte, I.; Pompei,
M.; Koch, U.; Gennari, N.; Giuliano, C.; Rowley, M.; Narjes, F. Bioorg.
Med. Chem. Lett. 2009, 19, 627–632. (b) Habermann, J.; Capitꢁo, E.;
Ferreira, M. d. R. R.; Koch, U.; Narjes, F. Bioorg. Med. Chem. Lett. 2009,
19, 633–638. (c) Faust, R.; Garratt, P. J.; Jones, R.; Yeh, L.-K.; Tsotinis,
A.; Panoussopoulou, M.; Calogeropoulou, T.; Teh, M.-T.; Sugden, D.
J. Med. Chem. 2000, 43, 1050–1061. (d) Kozikowski, A. P.; Ma, D.;
Brewer, J.; Sun, S.; Costa, E.; Romeo, E.; Guidotti, A. J. Med. Chem. 1993,
36, 2908–2920.
(18) For an elegant approach to related annulated indoles using
norbornene shuttle chemistry, see: (a) Bressy, C.; Alberico, D.; Lautens,
M. J. Am. Chem. Soc. 2005, 127, 13148–13149. (b) Jafarpour, F.;
Lautens, M. Org. Lett. 2006, 8, 3601–3604.
(2) (a) Li, R.; Jiang, L.; Lu, W. Organometallics 2006, 25, 5973–5975.
(b) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172–1175. (c) Hull,
K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904–11905.
(d) Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007,
129, 12072–12073. (e) Xia, J.-B.; You, S.-L. Organometallics 2007, 26,
4869–4871. (f) Dwight, T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.;
DeBoef, B. Org. Lett. 2007, 9, 3137–3139. (g) Potavathri, S.; Dumas,
A. S.; Dwight, T. A.; Naumiec, G. R.; Hammann, J. M.; DeBoef, B.
Tetrahedron Lett. 2008, 49, 4050–4053. (h) Li, B.-J.; Tian, S.-L.; Fang,
Z.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1115–1118. (i) Brasche, G.;
Garcıa-Fortanet, J.; Buchwald, S. L. Org. Lett. 2008, 10, 2207–2210.
1211
dx.doi.org/10.1021/ja1090854 |J. Am. Chem. Soc. 2011, 133, 1209–1211