F. de Azambuja, C. R. D. Correia / Tetrahedron Letters 52 (2011) 42–45
45
CO2Me
References and notes
OMe
CO2Me
Et3SiH
TMSOTf
HN
CF3
1. Nájera, C.; Sansano, J. M. Chem. Rev. 2007, 107, 4584. and references cited.
2. (a) Voyer, N.; Lamothe, J. Tetrahedron 1995, 51, 9241; (b) Humphrey, J. M.;
Chamberlin, A. R. Chem. Rev. 1997, 97, 2243.
MeO
MeO
HN
CF3
1,2-DCE
0 - 83 ºC
O
MeO
22, 36 %
O
3. (a) Wang, Q.; Parrish, A. R.; Wang, L. Chem. Biol. 2009, 16, 323; (b) Tanaka, Y.;
Bond, M. R.; Kohler, J. J. Mol. BioSyst. 2008, 4, 473; (c) Agris, P. F. Nucleic Acids
Res. 2004, 32, 223; (d) Chin, J. W.; Cropp, A.; Anderson, J. C.; Mukherki, M.;
Zhang, Z.; Schultz, P. G. Science 2003, 301, 964.
4. (a) Bernier, D.; Brückner, R. Synthesis 2007, 2249; (b) Watzke, A.; O’Malley, S. J.;
Bergman, R. G.; Ellman, J. A. J. Nat. Prod. 2006, 69, 1231; (c) Han, X.; Jiang, X.-J.;
Civiello, R. L.; Degnan, A. P.; Chaturvedula, P. V.; Macor, J. E.; Dubowchik, G. M.
J. Org. Chem. 2009, 74, 3993.
+
11
CO2Me
CF3
HN
O
23, 35 %
CO2Me
CF3
5. Koh, J. T.; Hassan, A. Q. Angew. Chem., Int. Ed. 2008, 47, 7280.
6. (a) Fracchiolla, G.; Laghezza, A.; Piemontese, L.; Tortorella, P.; Mazza, F.;
Montanari, R.; Pochetti, G.; Lavecchia, A.; Novellino, E.; Pierno, S.; Camerino, D.
C.; Loiodice, F. J. Med. Chem. 2009, 52, 6382; (b) Ahmed, Z.; Albrecht, U.; Langer,
P. Eur. J. Org. Chem. 2005, 3469; (c) Braña, M. F.; García, M. L.; López, B.; Pascual-
Teresa, B.; Ramos, A.; Pozuelo, J. M.; Domínguez, M. T. Org. Biomol. Chem. 2004,
2, 1864.
7. (a) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009; (b) Heck, R. F.
Synlett 2006, 2855; (c) Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron 2005, 61,
11771; (d) Reetz, M. T.; Vries, J. G. Chem. Commun. 2004, 1559.
Pd/C, H2
HN
MeO
THF, r.t., 20 h
quant.
O
22, 71 % overall yield
Scheme 3. Route to the phenylalanine derivatives.
8. (a) Chan, C.; Zheng, S.; Zhou, B.; Guo, J.; Heid, R. M.; Wright, B. J. D.;
Danishefsky, S. J. Angew. Chem., Int. Ed. 2006, 45, 1749; (b) Yamada, K.;
Kurokawa, T.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 6630; (c)
Prasad, C. V. C.; Mercer, S. E.; Dubowchik, G. M.; Macor, J. E. Tetrahedron Lett.
2007, 48, 2661; (d) Willans, C. E.; Mulders, J. M. C. A.; Vries, J. G.; Vries, A. H. M.
J. Organomet. Chem. 2003, 687, 494.
9. For other phenylalanine derivatives synthesis and applications, see: (a) Boyle,
T. P.; Bremner, J. B.; Coates, J. A.; Deadman, J.; Keller, P. A.; Pyne, S. G.; Somphol,
K. Eur. J. Med. Chem. 2009, 44, 1001; (b) Zheng, H.; Comeforo, K.; Gao, J. J. Am.
Chem. Soc. 2009, 131, 18; (c) Chapman, C. J.; Frost, C. G. Adv. Synth. Catal. 2003,
345, 353; (d) Firooznia, F.; Gude, C.; Chan, K.; Marcopulos, N.; Satoh, Y.
Tetrahedron Lett. 1999, 40, 213; (e) Yuan, W.; Hruby, V. J. Tetrahedron Lett. 1997,
38, 3853.
10. Roglans, A.; Pla-Quintana, A.; Moreno-Mañas, M. Chem. Rev. 2006, 106, 4622.
11. For some recent contributions, see: (a) Silva, K. P.; Godoi, M. N.; Correia, C. R. D.
Org. Lett. 2007, 9, 2815; (b) Meira, P. R. R.; Moro, A. V.; Correia, C. R. D. Synthesis
2007, 2279; (c) Barreto, R. L.; Nascimbem, L. B. L. R.; Correia, C. R. D. Synth.
Commun. 2007, 37, 2011; (d) Moro, A. V.; Cardoso, F. S. P.; Correia, C. R. D.
Tetrahedron Lett. 2008, 49, 5668; (e) Machado, A. H. L.; Sousa, M. A.; Patto, D. C.
S.; Azevedo, L. F. S.; Bombonato, F. I.; Correia, C. R. D. Tetrahedron Lett. 2009, 50,
1222; (f) Pastre, J. C.; Correia, C. R. D. Adv. Synth. Catal. 2009, 351, 1217; (g)
Moro, A. V.; Cardoso, F. S. P.; Correia, C. R. D. Org. Lett. 2009, 11, 3642; (h)
Siqueira, F. A.; Taylor, J. G.; Correia, C. R. D. Tetrahedron Lett. 2010, 51, 2102; (i)
Pastre, J. C.; Génisson, Y.; Saffon, N.; Dandurand, J.; Correia, C. R. D. J. Braz.
Chem. Soc. 2010, 21, 821.
12. For other contributions, see: (a) Felpin, F.-X.; Miqueu, K.; Sotiropoulos, J.-M.;
Fouquet, E.; Ibarguren, O.; Laudien, J. Chem. Eur. J. 2010, 16, 5191; (b) Felpin, F.-
X.; Fouquet, E.; Zakri, C. Adv. Synth. Catal. 2008, 350, 2559; (c) Cacchi, S.; Fabrizi,
G.; Goggiamani, A.; Persiani, D. Org. Lett. 2008, 10, 1597; (d) Masllorens, J.;
Moreno-Mañas, M.; Pla-Quintana, A.; Roglans, A. Org. Lett. 2003, 5, 1559; (e)
Priego, J.; Carretero, J. C. Synlett 1999, 1603.
Table 4
One-pot approach to the phenylalanine derivatives
N2BF4
Pd(OAc)2
DTBMP
CO2Me
NHAc
CO2Me
+
NHAc
Et3SiH
T (ºC), solvent
MeO
OMe
2
4
19
Entry
Equiv 4:2:silane
T (°C)
Solvent
Yield (%)
1
2
3
4
1:1:2
65
65
65
65
0
MeOH
MeOH
THF:MeOH (3:2)
THF:MeOH (6:1)
THF:MeOH (3:2)
THF:MeOH (3:2)
21
35
42
34
54
43
1:1:10
1:1:10
1:1:10
1:2:5
6
7a
1:2:2
0
a
Silane: Ph3SiH.
N2BF4
Pd(OAc)2
CO2Me
NHAc
CO2Me
+
DTBMP (1 equiv.)
NHAc
THF:MeOH (3:2)
Et3SiH
0 ºC, 40 min
MeO
OMe
4
2
19
13. Application of the reaction conditions reported by Felpin (Ref. 12a). to the
reaction of acrylate 4 with diazonium salt 2 (methanol, room temperature,
2 mol % of Pd(OAc)2) furnished the methoxylated product 8 in only 4% yield
after four days (10% conversion of the starting material). However, reaction of
acrylate 6 with diazonium salt 2 under the same conditions furnished the
methoxylated product 8 in 92% yield after 18 h. On the other hand, reaction of
one-pot: 54 %
two-step process: 57 %
OMe
Pd(OAc)2
DTBMP
BF3.OEt2
Et3SiH
CO2Me
acrylate 6 with m-nitrodiazonium tetrafluoroborate salt furnished the
methoxylated product 15 in <10% yield, after 18 h.
NHAc
14. (a) Sabino, A. A.; Machado, A. H. L.; Correia, C. R. D.; Eberlin, M. N. Angew. Chem.,
Int. Ed. 2004, 43, 2514; (b) Sabino, A. A.; Machado, A. H. L.; Correia, C. R. D.;
Eberlin, M. N. Angew. Chem., Int. Ed. 2004, 43, 4389.
MeOH
65 ºC, 2 h
MeO
r.t., 18 h
8
15. Roos, E. C.; López, M. C.; Brook, M. A.; Hiemstra, H.; Speckamp, W. N.; Kaptein,
K.; Kamphuis, J.; Schoemaker, H. E. J. Org. Chem. 1993, 58, 3259.
16. For earlier examples of amino acid synthesis using iminium chemistry: (a) Ben-
Ishai, D.; Moshenberg, R.; Altman, J. Tetrahedron 1977, 33, 1533. and references
cited; (b) Ben-Ishai, D.; Altman, J.; Peled, N. Tetrahedron 1977, 33, 2715.
17. See Ref. 15 for the synthesis of this particular phenylalanine.
18. (a) Kikukawa, K.; Totoki, T.; Wada, F.; Matsuda, T. J. Organomet. Chem. 1984,
270, 283.
Scheme 4. Comparison between one- and two-step processes.
Acknowledgments
The authors thank the Brazilian National Research Council
(CNPq) and the Research Supporting Foundation of the State of
São Paulo (FAPESP) for fellowships and financial support.
Supplementary data
Supplementary data associated with this article can be found, in