94
A.E. Wetherby Jr. et al. / Inorganica Chimica Acta 364 (2010) 89–95
mixture was stirred at reflux for 18 h and the volatiles were re-
moved in vacuo to yield 4 (0.148 g, 86%) as white crystals. 1H
NMR: d 8.20 (s, 1H, 4,40-H), 8.13 (s, 1H, 4,40-H), 7.73–7.55 (m, 8H,
aromatics), 7.24–7.00 (m, 12H, aromatics), 6.86–6.78 (m, 2H, aro-
matics), 0.82 (s, 3H, Si(CH3)2Ph), 0.79 (s, 3H, Si(CH3)2Ph), 0.71 (s,
3H, Si(CH3)2Ph), 0.63 (s, 3H, Si(CH3)2Ph), 0.12 (s, 3H, GeCH3) ppm.
Anal. Calcd. for C37H35GeIO2Si2: C, 57.91; H, 4.60. Found: C,
57.64; H, 4.45%.
Appendix A. Supplementary material
CCDC 774956, 774957, 774958, and 774959 contain the supple-
mentary crystallographic data for 3, 4, 5, and 7. These data can be
obtained free of charge from The Cambridge Crystallographic Data
data associated with this article can be found, in the online version,
References
4.4. Synthesis of 5
[1] J. Barrau, G. Rima, T. El Amraoui, Organometallics 17 (1998) 607.
[2] T.J. Boyle, L.J. Tribby, L.A.M. Ottley, S.M. Han, Eur. J. Inorg. Chem. (2009) 5550.
[3] B. Cetinkaya, I. Gumrukcu, M.F. Lappert, J.L. Atwood, R.D. Rogers, M.J.
Zaworotko, J. Am. Chem. Soc. 102 (1980) 2088.
[4] A.J. Chmura, C.J. Chuck, M.G. Davidson, M.D. Jones, M.D. Lunn, S.D. Bull, M.F.
Mahon, Angew. Chem., Int. Ed. 46 (2007) 2280.
[5] R.O. Day, J.M. Holmes, A.C. Sau, R.R. Holmes, Inorg. Chem. 21 (1982) 281.
[6] D.A. Dickie, I.S. MacIntosh, D.D. Ino, Q. He, O.A. Labeodan, M.C. Jennings, G.
Schatte, C.J. Walsby, J.A.C. Clyburne, Can. J. Chem. 86 (2008) 20.
[7] S.E.-C. El Kettani, M. Lazraq, H. Ranaivonjatovo, J. Escudie, H. Gornitzka, F.
Ouhsaine, Organometallics 26 (2007) 3729.
To a solution of 2 (0.100 g, 0.178 mmol) in benzene (10 mL) was
added a solution of ButI (0.040 g, 0.218 mmol) in benzene (5 mL).
The reaction mixture was stirred at room temperature for 8 h
and the volatiles were removed in vacuo to yield 5 (0.045 g, 34%)
as colorless crystals. 1H NMR: d 7.43 (d, J = 8.1 Hz, 4H, m-
C6H3Ph2), 7.24–7.13 (m, 20H, o- and p-C6H3(C6H5)2), 6.89 (t,
J = 8.1 Hz, 2H, p-C6H3Ph2), 0.32 (s, 9H, –C(CH3)3) ppm. Anal. Calcd.
for C40H35GeIO2: C, 64.27; H, 4.72. Found: C, 64.11; H, 4.59%.
[8] H. Gerung, T.J. Boyle, L.J. Tribby, S.D. Bunge, C.J. Brinker, S.M. Han, J. Am. Chem.
Soc. 128 (2006) 5244.
[9] R.A. Green, C. Moore, A.L. Rheingold, C.S. Weinert, Inorg. Chem. 48 (2009) 7510.
[10] R.A. Green, A.L. Rheingold, C.S. Weinert, Inorg. Chim. Acta 362 (2009) 3159.
[11] T. Hascall, A.L. Rheingold, I. Guzei, G. Parkin, Chem.Commun. (1998) 101.
[12] T. Hascall, K. Pang, G. Parkin, Tetrahedron 63 (2007) 10826.
[13] P.B. Hitchcock, M.F. Lappert, S.A. Thomas, A.J. Thorne, A.J. Carty, N.J. Taylor, J.
Organomet. Chem. 315 (1986) 27.
[14] R.R. Holmes, R.O. Day, A.C. Sau, C.A. Poutasse, J.M. Holmes, Inorg. Chem. 24
(1985) 193.
[15] R.R. Holmes, R.O. Day, A.C. Sau, C.A. Poutasse, J.M. Holmes, Inorg. Chem. 25
(1986) 607.
[16] R.R. Holmes, R.O. Day, A.C. Sau, J.M. Holmes, Inorg. Chem. 25 (1986) 600.
[17] M. Jindal, A. Singh, Indian J. Chem., Sect. A 47A (2008) 228.
[18] N. Khoury, S.D. Pastor, D. Rahni, C.F. Richardson, N.A. Syed, S.P. Shum, A.
Chandrasekaran, Phosphorus, Sulfur, Silicon, Relat. Elem. 179 (2004) 483.
[19] B.G. McBurnett, A.H. Cowley, Chem. Commun. (1999) 17.
[20] S.D. Pastor, D.N. Rahni, N. Khoury, S.A. Koch, Phosphorus, Sulfur, Silicon, Relat.
Elem. 181 (2006) 1951.
4.5. Synthesis of 6
To a solution of 2 (0.383 g, 0.680 mmol) in benzene (25 mL)
was added neat MeI (0.105 g, 0.740 mmol). The reaction mixture
was stirred at room temperature for 8 h and the volatiles were
removed in vacuo to yield 6 (0.412 g, 86%) as a colorless powder.
1H NMR: d 7.48 (d, J = 7.5 Hz, 4H, m-C6H3Ph2), 7.28–7.10 (m, 20H,
–C6H3(C6H5)2), 6.92 (t, J = 7.5 Hz, 2H, p-C6H3Ph2), ꢀ0.49 (s, 3H,
–CH3) ppm. MS: m/z = 706 amu (M+), 579 (M+ꢀI), 461
(M+ꢀOC6H3Ph2) amu. Anal. Calcd. for C37H29GeIO2: C, 63.00; H,
4.15. Found: C, 62.87; H, 4.27%.
[21] A.V. Piskunov, I.A. IAivaz’yan, A.I. Poddel’sky, G.K. Fukin, E.V. Baranov, V.K.
Cherkasov, G.A. Abakumov, Eur. J. Inorg. Chem. (2008) 1435.
[22] A.C. Sau, R.O. Day, R.R. Holmes, J. Am. Chem. Soc. 102 (1980) 7972.
[23] H. Schafer, W. Saak, M. Weidenbruch, Organometallics 18 (1999) 3159.
[24] O. Seiler, C. Burschka, M. Penka, R. Tacke, Silicon Chem. 1 (2002) 355.
[25] G.D. Smith, P.E. Fanwick, I.P. Rothwell, Inorg. Chem. 29 (1990) 3221.
[26] C. Stanciu, A.F. Richards, M. Stender, M.M. Olmstead, P.P. Power, Polyhedron 25
(2006) 477.
[27] R. Tacke, J. Sperlich, B. Becker, Chem. Ber. 127 (1994) 643.
[28] R. Tacke, A. Stewart, J. Becht, C. Burschka, I. Richter, Can. J. Chem. 78 (2000)
1380.
[29] T. Thompson, S.D. Pastor, G. Rihs, Inorg. Chem. 38 (1999) 4163.
[30] C.S. Weinert, P.E. Fanwick, I.P. Rothwell, Acta Crystallogr. E58 (2002) m718.
[31] C.S. Weinert, P.E. Fanwick, I.P. Rothwell, J. Chem. Soc., Dalton Trans. (2002)
2948.
4.6. Synthesis of 7
To a solution of 6 (0.292 g, 0.414 mmol) in benzene (25 mL)
was added a solution of 2,6-diphenylphenol (0.102 g, 0.414 mmol)
in benzene (10 mL). The reaction mixture was stirred at room
temperature for 12 h after which time a white precipitate had
formed. The reaction mixture was filtered, washed with benzene
(3 ꢂ 5 ml) and hexane (3 ꢂ 5 mL) and the solid was dried in vacuo
to yield 7 (0.262 g, 77%) as a colorless powder. 1H NMR: d 7.64
(d, J = 7.7 Hz, 6H, m-C6H3Ph2), 7.40–7.28 (m, 24H, o- and m-
C6H3(C6H5)2), 7.07 (t, J = 7.7 Hz, 3H, p-C6H3Ph2), 7.00 (t, J = 7.5 Hz,
6H, p-C6H3(C6H5)), ꢀ0.12 (s, 3H, –CH3) ppm. Anal. Calcd. for
[32] C.S. Weinert, P.E. Fanwick, I.P. Rothwell, Dalton Trans. (2003) 1795.
[33] C.S. Weinert, A.E. Fenwick, P.E. Fanwick, I.P. Rothwell, Dalton Trans. (2003)
532.
[34] A.E. Wetherby Jr., L.R. Goeller, A.G. DiPasquale, A.L. Rheingold, C.S. Weinert,
Inorg. Chem. 46 (2007) 7579.
C61H48GeO3 (7ꢁC6H6): C, 81.24; H, 5.37. Found: C, 81.52; H, 5.31%.
4.7. Single crystal X-ray crystallography
[35] A.E. Wetherby, A.L. Rheingold, C.L. Feasley, C.S. Weinert, Polyhedron 27 (2008)
1841.
[36] A.E. Wetherby Jr., L.R. Goeller, A.G. DiPasquale, A.L. Rheingold, C.S. Weinert,
Inorg. Chem. 47 (2008) 2162.
Samples were mounted on a Cryoloop with Paratone-N oil un-
der a stream of nitrogen gas at ꢀ173 °C. Data was collected on
an APEX2 CCD system and then processed using the APEX2 soft-
ware for preliminary determination of the unit cell. Diffraction
intensity data were collected with a Siemens P4/CCD diffractome-
ter. Crystallographic data and details are shown in Table 4. Absorp-
[37] A.C. Filippou, P. Portius, A.I. Philippopoulos, Organometallics 21 (2002) 653.
[38] R.K. Chadha, J.E. Drake, M.K.H. Neo, J. Crystallogr. Spectrosc. Res. 15 (1985) 39.
[39] Y. Inoguchi, S. Okui, K. Mochida, A. Itai, Bull. Chem. Soc. Jpn. 58 (1985) 974.
[40] F. Cheng, M.F. Davis, A.L. Hector, W. Levason, G. Reid, M. Webster, W. Zhang,
Eur. J. Inorg. Chem. (2007) 4897.
[41] A.G. Avent, F.G.N. Cloke, M.D. Francis, P.B. Hitchcock, J.F. Nixon, Chem.
Commun. (2000) 879.
[42] A. Sekiguchi, Y. Ishida, N. Fukaya, M. Ichinohe, N. Takagi, S. Nagase, J. Am.
Chem. Soc. 124 (2002) 1158.
[43] I. Saur, K. Miqueu, G. Rima, J. Barrau, V. Lemierre, A. Chrostowska, J.-M.
Sotiropoulos, G. Pfister-Guillouzo, Organometallics 22 (2003) 3143.
[44] H. Preut, H.-J. Haupt, Acta Crystallogr. B36 (1980) 678.
[45] H.H. Karsch, J. Hofmann, G. Muller, J. Chem. Soc., Chem. Commun. (1988) 516.
[46] J.A. Dopke, D.R. Powell, R.K. Hayashi, D.F. Gaines, Inorg. Chem. 37 (1998) 4160.
[47] J. Janczak, M. Razik, R. Kubiak, Acta Crystallogr. C55 (1999) 359.
[48] S.R. Stobart, M.R. Churchill, F.J. Hollander, W.J. Youngs, J. Chem. Soc., Chem.
Commun. (1979) 911.
tion corrections were applied for all data using SADABS. The
structures were solved using direct methods, completed by differ-
ence Fourier syntheses, and refined on full-matrix least-squares
procedures on F2. All ordered non-hydrogen atoms were refined
with anisotroptic displacement coefficients and hydrogen atoms
were treated as idealized contributions. All software and sources
of scattering factors are contained in the SHEXTL (5.10) program
package (G. Sheldrick, Bruker XRD, Madison, WI). ORTEP diagrams
were drawn using the ORTEP3 program (L.J. Farrugia, Glasgow).
[49] N.G. Bokii, Y.T. Struchkov, Zh. Strukt. Khim. 8 (1967) 122.