Table 3 Cu-catalysed O-arylation reactions between benzoic acids
and aryl boronic acidsa
G. Deng and L. M. Levy, J. Am. Chem. Soc., 2007, 129, 4824;
(c) L. J. Goossen, B. Zimmermann and T. Knauber, Angew.
Chem., Int. Ed., 2008, 47, 7103; (d) L. J. Goossen, F. Rudolphi,
C. Oppel and N. Rodriguez, Angew. Chem., Int. Ed., 2008, 47,
3043; (e) L. J. Goossen, N. Rodriguez, P. P. Lange and C. Linder,
Angew. Chem., Int. Ed., 2010, 49, 1111.
4 P. Forgione, M.-C. Brochu, M. St-Onge, K. H. Thesen,
M. D. Bailey and F. Bilodeau, J. Am. Chem. Soc., 2006, 128,
11350.
5 (a) A. Maehara, H. Tsurugi, T. Satoh and M. Miura, Org. Lett.,
2008, 10, 1159; (b) M. Miyasaka, A. Fukushima, T. Satoh,
K. Hirano and M. Miura, Chem.–Eur. J., 2009, 15, 3674;
(c) M. Yamashita, K. Hirano, T. Satoh and M. Miura, Org. Lett.,
2010, 12, 592.
6 (a) J. Moon, M. Jeong, H. Nam, J. Ju, J. H. Moon, H. M. Jung and
S. Lee, Org. Lett., 2008, 10, 945; (b) J. Moon, M. Jang and S. Lee,
J. Org. Chem., 2009, 74, 1403.
7 (a) Z. Y. Wang, Q. P. Ding, X. D. He and J. Wu, Org. Biomol.
Chem., 2009, 7, 863; (b) Y. Luo and J. Wu, Chem. Commun., 2010,
46, 3785.
8 (a) R. Shang, Y. Fu, J. B. Li, S. L. Zhang, Q. X. Guo and
L. Liu, J. Am. Chem. Soc., 2009, 131, 5738; (b) R. Shang,
Q. Xu, Y.-Y. Jiang, Y. Wang and L. Liu, Org. Lett.,
2010, 12, 1000; (c) M. Li and H. Ge, Org. Lett., 2010, 12, 3464;
(d) P. Fang, M. Li and H. Ge, J. Am. Chem. Soc., 2010, 132,
11898.
9 J.-M. Becht and C. L. Drian, Org. Lett., 2008, 10, 3161.
10 A. Voutchkova, A. Coplin, N. E. Leadbeater and R. H. Crabtree,
Chem. Commun., 2008, 6312.
11 (a) R. Shang, Y. Fu, Y. Wang, Q. Xu, H.-Z. Yu and L. Liu, Angew.
Chem., Int. Ed., 2009, 48, 9350; (b) M. Yu, D. Pan, W. Jia,
W. Chen and N. Jiao, Tetrahedron Lett., 2010, 51, 1287;
(c) W. Jia and N. Jiao, Org. Lett., 2010, 12, 2000.
12 (a) Z.-M. Sun and P. Zhao, Angew. Chem., Int. Ed., 2009, 48,
6726; (b) Z.-M. Sun, J. Zhang and P. Zhao, Org. Lett., 2010,
12, 992.
13 P. Hu, J. Kan, W. Su and M. Hong, Org. Lett., 2009,
11, 2341.
a
Reaction conditions: 0.2 mmol aryl acid, 0.4 mmol boronic acid, 0.04
mmol Cu(OTf)2, 0.4 mmol Ag2CO3, 1 mL DMSO, 120 1C, 2 h.
Isolated yields. 0.6 mmol phenylboronic acid was used.
b
c
14 (a) C. Wang, I. Piel and F. Glorius, J. Am. Chem. Soc., 2009, 131,
4194; (b) J. Zhou, P. Hu, M. Zhang, S. Huang, M. Wang and
W. Su, Chem.–Eur. J., 2010, 16, 5876; (c) F. Zhang and
M. F. Greaney, Angew. Chem., Int. Ed., 2010, 49, 2768;
(d) J. Zhou, P. Hu, M. Zhang, S. Huang, M. Wang and W. Su,
Chem.–Eur. J., 2010, 16, 5876; (e) M. Zhang, J. Zhou, M. Wang,
W. Su and M. Hong, Chem. Commun., 2010, 46, 5455.
15 Z. Duan, S. Ranjit, P. Zhang and X. Liu, Chem.–Eur. J., 2009, 15,
3666.
Under the optimized conditions with Cu(OTf)2 as catalyst
(see ESIw), the O-arylation reaction can be used to synthesize
various aromatic esters (Table 3). Both electron-rich and
electron-poor aromatic acids can be used. Both electron-rich
and electron-poor boronic acids can also be tolerated. In
addition, vinyl acids (6n, 6o) and heterocyclic acids (6p–r)
are good substrates. Also, the halogen groups can be tolerated
(6c, 6f). Moreover, it is important that vinyl boronic acids
(6s–6u) can participate in the reaction, because aryl enol esters
can be otherwise difficult products to obtain.
16 L. J. Goossen, J. Paetzold and D. Koley, Chem. Commun., 2003,
706.
17 L. J. Goossen and K. Ghosh, Chem. Commun., 2002, 836.
18 (a) L. J. Goossen and K. Ghosh, Angew. Chem., Int. Ed., 2001, 40,
3458; (b) L. J. Goossen and K. Ghosh, Chem. Commun., 2001,
2084; (c) K. Nagayama, I. Shimizu and A. Yamamoto, Chem.
Lett., 2001, 1242; (d) L. J. Goossen, D. Koley, H. L. Hermann and
W. Thiel, J. Am. Chem. Soc., 2005, 127, 11102.
19 (a) M. S. Stephan, A. J. J. M. Teunissen, G. K. M. Verzijl and
J. G. de Vries, Angew. Chem., Int. Ed., 1998, 37, 662;
(b) L. J. Goossen and N. Rodriguez, Chem. Commun., 2004, 724;
(c) L. J. Goossen and J. Paetzold, Angew. Chem., Int. Ed., 2002, 41,
1237; (d) L. J. Goossen and J. Paetzold, Angew. Chem., Int. Ed.,
2004, 43, 1095.
In summary, orthogonal decarboxylative Suzuki coupling
and O-arylation reactions of aromatic carboxylic acids
have been observed with Pd- and Cu-based catalyst systems
respectively. Coupling partners with diverse electronic properties
and many functional groups (in particular, chloro and
bromo groups that are not well tolerated in classical Suzuki
couplings) can be selectively transformed under these con-
ditions. These reactions provide new examples for the use of
carboxylic acids as versatile substrates in transition-metal
catalysed synthesis.
20 L. J. Goossen and J. Paetzold, Adv. Synth. Catal., 2004, 346, 1665.
21 Related, important studies: (a) M. Yamashita, K. Hirano, T. Satoh
and M. Miura, Chem. Lett., 2010, 68; (b) C. Feng and T.-P. Loh,
Chem. Commun., 2010, 46, 4779.
22 (a) D. M. Chan, K. L. Monaco, R.-P. Wang and M. P. Winters,
Tetrahedron Lett., 1998, 39, 2933; (b) P. Y. S. Lam, C. G. Clark,
S. Saubern, J. Adams, M. P. Winters, D. M. T. Chan and
A. Combs, Tetrahedron Lett., 1998, 39, 2941; (c) D. A. Evans,
J. L. Katz, G. S. Peterson and T. Hintermann, J. Am. Chem. Soc.,
2001, 123, 12411; (d) S. V. Ley and A. W. Thomas, Angew. Chem.,
Int. Ed., 2003, 42, 5400; (e) Y. Bolshan and R. A. Batey, Angew.
Chem., Int. Ed., 2008, 47, 2109; (f) R. E. Shade, A. M. Hyde,
J.-C. Olsen and C. A. Merlic, J. Am. Chem. Soc., 2010, 132, 1202.
Notes and references
1 A recent review: L. J. Goossen, N. Rodriguez and K. Goossen,
Angew. Chem., Int. Ed., 2008, 47, 3100.
2 (a) A. G. Myers, D. Tanaka and M. R. Mannion, J. Am. Chem.
Soc., 2002, 124, 11250; (b) D. Tanaka, S. P. Romeril and
A. G. Myers, J. Am. Chem. Soc., 2005, 127, 10323.
3 (a) L. J. Goossen, G. Deng and L. M. Levy, Science, 2006, 313,
662; (b) L. J. Goossen, N. Rodriguez, B. Melzer, C. Linder,
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 677–679 679