Published on Web 05/18/2007
Switching from S- to R-Selectivity in the Candida antarctica
Lipase B-Catalyzed Ring-Opening of ω-Methylated Lactones:
Tuning Polymerizations by Ring Size
Jeroen van Buijtenen,† Bart A. C. van As,† Marloes Verbruggen,† Luc Roumen,‡
Jef A. J. M. Vekemans,† Koen Pieterse,‡ Peter A. J. Hilbers,‡
Lumbertus A. Hulshof,† Anja R. A. Palmans,*,† and E. W. Meijer*,†
Contribution from the Laboratory of Macromolecular and Organic Chemistry, Department of
Chemical Engineering and the Biomodeling and Bioinformatics Group, Department of
Biomedical Engineering, EindhoVen UniVersity of Technology, P.O. Box 513,
5600 MB EindhoVen, The Netherlands
Received February 21, 2007; E-mail: a.palmans@tue.nl; e.w.meijer@tue.nl
Abstract: Novozym 435-catalyzed ring-opening of a range of ω-methylated lactones demonstrates
fascinating differences in rate of reaction and enantioselectivity. A switch from S- to R-selectivity was
observed upon going from small (ring sizes e7) to large lactones (ring sizes g8). This was attributed to
the transition from a cisoid to a transoid conformational preference of the ester bond on going from small
to large lactones. The S-selectivity of the ring-opening of the small, cisoid lactones was low to moderate,
while the R-selectivity of the ring-opening of the large transoid lactones was surprisingly high. The
S-selectivity of the ring-opening of the small, cisoid lactones combined with the established R-selectivity of
the transesterification of (aliphatic) secondary alcohols prevented polymerization from taking place. Ring-
opening of the large, transoid lactones was R-selective with high enantioselectivity. As a result, these lactones
could be polymerized, without exception, by straightforward kinetic resolution polymerization, yielding the
enantiopure R-polyester with excellent enantiomeric excess (>99%).
Introduction
example, enantioselective metal-based catalysts or organocata-
lysts resulted in isotactic PLA when racemic D,L-lactide was
The availability of (cheap) enantiomerically pure monomers
has played an important role in the development of synthetic
approaches to chiral polymers. A prominent example of an
optically pure monomer available from the chiral pool is
L-lactide, which is industrially synthesized and employed in the
synthesis of poly(L-lactide) (PLA). This polymer is well-studied
as a biocompatible and biodegradable material.1 Readily avail-
able enantiopure monomers such as D- or L-tartaric acid have
also been investigated in the synthesis of chiral polyamides,
poly(ester amide)s, and polyesters, and the polymers show
promise as biodegradable materials with good mechanical
properties.2 Most monomers, however, are not readily available
in enantiopure form. To circumvent the need for enantiopure
monomers, enantioselective catalysts have been explored to
prepare stereoregular polymers from racemic monomers. For
employed as the monomer.3 In addition, racemic substituted
lactones were selectively polymerized with a chiral Al-based
catalyst, albeit with a significantly lower selectivity.3k
Catalysts from natural sources such as lipases are a valuable
extension in the quest to procure enantiomerically pure polymers
from optically inactive monomers. A range of chiral polyesters
has been synthesized by lipase-catalyzed ring-opening polym-
erization of substituted racemic ꢀ-caprolactones.4-8 In most
cases, commercially available Novozym 435sCandida antarc-
(3) (a) Kasperczyk, J.; Bero, M. Polymer 1999, 41, 391. (b) Ovitt, T. M.; Coates,
G. W. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 4686. (c) Radano,
C. P.; Baker, G. L.; Smith, M. R., III. J. Am. Chem. Soc. 2000, 122, 1552.
(d) Nomura, N.; Ishii, R.; Akakura, M.; Aoi, K. J. Am. Chem. Soc. 2002,
124, 5938. (e) Zhong, Z.; Dijkstra, P. J.; Feijen, J. Angew. Chem., Int. Ed.
2002, 41, 4510. (f) Zhong, Z. Y.; Dijkstra, P. J.; Feijen, J. J. Am. Chem.
Soc. 2003, 125, 11291. (g) Hormnirun, P.; Marshall, E. L.; Gibson, V. C.;
White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2004, 126, 2688. (h)
Chisholm, M. H.; Patmore, N. J.; Zhou, Z. Chem. Commun. 2005, 127. (i)
Russell, S. K.; Gamble, C. L.; Gibbins, K. J.; Juhl, K. C. S.; Mitchell, W.
S., III; Tumas, A. J.; Hofmeister, G. E. Macromolecules 2005, 38, 10336.
(j) Dove, A. P.; Li, H. B.; Pratt, R. C.; Lohmeijer, B. G. G.; Culkin, D. A.;
Waymouth, R. M.; Hedrick, J. L. Chem. Commun. 2006, 2881. (k) Ten
Breteler, M.; Zhong, Z.; Dijkstra, P. J.; Palmans, A. R. A.; Peeters, J.;
Feijen, J. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 429.
† Laboratory of Macromolecular and Organic Chemistry.
‡ Biomodeling and Bioinformatics Group.
(1) (a) Amass, W.; Amass, A.; Tighe, B. Polym. Int. 1998, 47, 89. (b) Ikada,
Y.; Tsuji, H. Macromol. Rapid Commun. 2000, 21, 117.
(2) (a) Bou, J. J.; Rodr´ıguez-Gala´n, A.; Mun˜oz-Guerra, S. Macromolecules
1993, 26, 5664. (b) Regan˜o, C.; de Ilarduya, A. M.; Iribarren, I.; Rodr´ıguez-
Gala´n, A.; Galbis, J. A.; Mun˜oz-Guerra, S. Macromolecules 1996, 29, 8404.
(c) Alla, A.; Rodr´ıguez-Gala´n, A.; de Ilarduya, A. M.; Mun˜oz-Guerra, S.
Polymer 1997, 38, 4935. (d) Bou, J. J.; Iribarren, I.; de Ilarduya, A. M.;
Mun˜oz-Guerra, S. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 983.
(e) Kint, D. P. R.; Wigstro¨m, E.; de Ilarduya, A. M.; Alla, A.; Mun˜oz-
Guerra, S. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 3250. (f)
Esquivel, D.; Bou, J.; Mun˜oz-Guerra, S. Polymer 2003, 44, 6169. (g)
Takasu, A.; Shibata, Y.; Narukawa, Y.; Hirabayashi, T. Macromolecules
2007, 40, 151.
(4) (a) Svirkin, Y. Y.; Xu, J.; Gross, R. A.; Kaplan, D. L.; Swift, G.
Macromolecules 1996, 29, 4591. (b) Xie, W. H.; Li, J.; Chen, D. P.; Wang,
P. G. Macromolecules 1997, 30, 6997. (c) Kobayashi, S.; Uyama, H.;
Namekawa, S. Polym. Degrad. Stab. 1998, 59, 195. (d) Ku¨llmer, K.;
Kikuchi, H.; Uyama, H.; Kobayashi, S. Macromol. Rapid Commun. 1998,
19, 127. (e) Al-Azemi, T. F.; Kondaveti, L.; Bisht, K. S. Macromolecules
2002, 35, 3380. (f) Runge, M.; O’Hagan, D.; Haufe, G. J. Polym. Sci.,
Part A: Polym. Chem. 2000, 38, 2004.
(5) (a) Kikuchi, H.; Uyama, H.; Kobayashi, S. Macromolecules 2000, 33, 8971.
(b) Kikuchi, H.; Uyama, H.; Kobayashi, S. Polym. J. 2002, 34, 835.
9
10.1021/ja071241a CCC: $37.00 © 2007 American Chemical Society
J. AM. CHEM. SOC. 2007, 129, 7393-7398
7393