158
D. Ramakrishna, B.R. Bhat / Inorganic Chemistry Communications 14 (2011) 155–158
Scheme 2. Proposed mechanism for the oxidation of alcohols using Ru/NaOCl.
31P NMR (H3PO4, δ ppm): 34.2.UV λmax (nm) (ε (M−1 cm−1): 437 (6056), 349
(12566), 302 (18310).
References
RuL4. Calcd. Anal. For C48H39ClN4O3P2Ru: C, 62.78; H, 4.28; N, 6.10; found: C, 62.49; H.
[1] I.W.C.E. Arends, T. Kodama, R.A. Sheldon, Topics in organometallic chemistry,
Springer, Berlin, 2004.
[2] M. Pagliaro, S. Campestrini, R. Ciriminna, Chem. Soc. Rev. 34 (2005) 837.
[3] D.M. Ziegler, Ann. Rev. Biochem. 54 (1985) 305.
[4] A.G. Lappins, A. McAuley, J. Chem. Soc. (1975) 15608 (A).
[5] R. Ramesh, Inorg. Chem. Commun. 7 (2004) 274.
[6] M. Hasan, M. Musawir, P.N. Davey, I.V. Kozhevnikov, J. Mol. Catal. A 180 (2002) 77.
[7] D. Ramakrishna, B. Ramachandra Bhat, R. Karvembu, Catal. Commun. 11 (2010)
498.
[8] D. Ramakrishna, B. Ramachandra Bhat, Inorg. Chem. Commun. 13 (2010) 195.
[9] A. Wolfson, S. Wuyts, D.E. De Vos, I.F.J. Vankelecom, P.A. Jacobs, Tetrahedron Lett.
43 (2002) 8107.
[10] J.W. Li, W. Sun, L.W. Xu, C.G. Xia, H.W. Wang, Chin. Chem. Lett. 15 (2004) 1437.
[11] B.S. Chhikara, S. Tehlan, A. Kumar, Synlett. (2005) 63.
4.16; N, 5.98. FT-IR (KBr, cm−1): 3245, 1568, 1439, 1275, 1099, 615, 525, 499, 446. 1
H
NMR (400 MHz, CDCl3, δ, ppm): 8.45 (s, -CH=N-), 6.75–8.15 (m, Ar-H), 3.85 (s, -N-H).
31P NMR (H3PO4, δ ppm): 33.8. UV λmax (nm) (ε (M−1 cm−1): 440 (6098), 345
(12422), 308 (18674).
RuL5. Calcd. Anal. For C48H42ClN3O2P2Ru: C, 65.15; H, 4.69; N, 4.65; found: C, 65.01; H.
4.56; N, 4.58. FT-IR (KBr, cm−1): 3238, 1561, 1449, 1281, 1102, 610, 520, 495, 449. 1
H
NMR (400 MHz, CDCl3, δ, ppm): 8.50 (s, -CH=N-), 6.75–8.15 (m, Ar-H), 3.85 (s, -N-H),
2.1 (s, -OCH3. 31P NMR (H3PO4, δ ppm): 33.5. UV λmax (nm) (ε (M−1 cm−1): 437
(6056), 353 (12710), 303 (18370).
[21] P. Byabartta, P.K. Santra, T.K. Misra, C. Sinha, C.H.L. Kennard, Polyhedron 20 (2001) 905.
[22] S. Goswami, R. Mukherjee, A. Chakravorty, Inorg. Chem. 22 (1983) 2825.
[23] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, Wiley Interscience, New York, 1971.
[24] N. Dharmaraj, P. Viswanathamurthi, K. Natarajan, Transit. Met. Chem. 26 (2001) 105.
[25] V. Chinnusamy, K. Natarajan, Synth. React. Inorg Met. Org. Chem. 23 (1993) 889.
[26] A. Ceulemans, L.G. Vanquickenborne, J. Am. Chem. Soc. 103 (1981) 2238.
[27] A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd ed.Elsevier, New York, 1984.
[28] A solution of ruthenium complex (0.01 mmol) in 0.1 mL EMIM ionic liquid was
added to the solution of substrate (1 mmol) and NaOCl (1 mmol- 0.1 mL of 15%
Solution). The mixture was stirred at room temperature. At the requisite times
aliquots of the reaction mixture were removed and the alcohol and aldehyde /
ketone extracted with ether. The ether solution was then analyzed by gas
chromatography using an internal standard method.
[12] G. Bianchini, M. Crucianelli, F. de Angelis, V. Neri, R. Saladino, Tetrahedron Lett. 46
(2005) 2427.
[13] A. Kumar, N. Jain, S.M.S. Chauhan, Synlett. (2007) 411.
[14] J. Nan, J.R. Arthur, Lett. 48 (2007) 273.
[15] J. Muzart, Adv. Synth. Catal. 348 (2006) 275.
[16] J. Chatt, G.J. Leigh, D.M.P. Mingos, R.J. Paske, J. Chem. Soc. (1968) 26368 (A).
[17] R.K. Poddar, I.P. Khullar, U. Agarwala, Inorg. Nucl. Chem. Lett. 10 (1974) 221.
[18] K. Natarajan, R.K. Poddar, U. Agarwala, J. Inorg. Nucl. Chem. 39 (1977) 431.
[19] A. Sarkar, S. Pal, Polyhedron 25 (2006) 1689.
[20] The ruthenium complex RuCl2(PPh3)3 [0.16 mmol; 0.150 g] and N-(2-pyridyl)-
N'-(5-R-salicylidene) hydrazine ligands (where R=–H, –Cl, –Br, –NO2, –OMe)
(0.16 mmol; 0.033–0.041 g) were taken in 20 ml benzene. The mixture was
refluxed for 3 h and was monitored by TLC. The solvent was partially evaporated
and light petroleum (600–800 C, 5 ml) was added to the reaction mixture to
separate the solid.
The aqueous layer, the ionic liquid with the catalyst dispersed within was then
separated and tested for its reusability.
[29] The reaction product analysis was carried out using gas chromatography (GC)
(Shimadzu 2014, Japan); the instrument has a 5% diphenyl and 95% dimethyl
siloxane Restek capillary column (30 m length and 0.25 mm diameter) and a
flame ionization detector (FID). The initial column temperature was increased
from 600 C to 1500 C at the rate of 100 C/min and then to 2200 C at the rate of
400 C/min Nitrogen gas was used as the carrier gas. The temperatures of the
injection port and FID were kept constant at 1500 C and 2500 C respectively
during product analysis. The retention times for different compounds were
determined by injecting commercially available compounds under identical gas
chromatography conditions. The oxidation products are commercially available,
and were identified by GC co-injection with authentic samples.
RuL1. Calcd. Anal. For C48H40ClN3OP2Ru: C, 66.01; H, 4.62; N, 4.81; found: C,
65.87; H. 4.56; N, 4.79. FT-IR (KBr, cm−1): 3244, 1564, 1444, 1296, 1096, 612, 520,
489, 451. 1 H NMR (400 MHz, CDCl3, δ, ppm): 8.55 (s, -CH=N-), 6.75–8.15 (m, Ar-
H), 3.85 (s, -N-H). 31P NMR (H3PO4, δ ppm): 34.1.UV λmax (nm) (ε (M−1 cm−1):
442 (6126), 350 (12603), 301 (18250).
RuL2. Calcd. Anal. For C48H39Cl2N3OP2Ru: C, 63.51; H, 4.33; N, 4.63; found: C,
63.47; H. 4.26; N, 4.57. FT-IR (KBr, cm−1): 3225, 1579, 1440, 1289, 1097, 611, 516,
491, 441. 1 H NMR (400 MHz, CDCl3, δ, ppm): 8.50 (s, -CH=N-), 6.75–8.15 (m, Ar-
H), 3.85 (s, -N-H). 31P NMR (H3PO4, δ ppm): 34.6.UV λmax (nm) (ε (M−1 cm−1):
439 (6084), 356 (12818), 305 (18493).
[30] M.M.T. Khan, Ch. Sreelatha, S.A. Mizra, G. Ramachandraiah, S.H.R. Abdi, Inorg.
Chim. Acta 154 (1988) 103.
[31] W.H. Leung, C.M. Che, Inorg. Chem. 28 (1989) 4619.
RuL3. Calcd. Anal. For C48H39BrClN3OP2Ru: C, 60.54; H, 4.13; N, 4.41; found: C, 60.49; H.
4.06; N, 4.37. FT-IR (KBr, cm−1): 3235, 1565, 1437, 1285, 1096, 620, 521, 492, 437. 1
H
[32] A.S. Goldstein, R.S. Drago, J. Chem. Soc. Chem. Commun. (1991) 21.
NMR (400 MHz, CDCl3, δ, ppm): 8.55 (s, -CH=N-), 6.75–8.15 (m, Ar-H), 3.85 (s, -N-H).