Journal of the American Chemical Society
COMMUNICATION
the first known bacterial enzyme to use it as a substrate.17,20 The
pcrB gene is always found in the same operon as pcrA,21 which
encodes an essential helicase involved in the replication and
transfer of DNA elements between bacteria.22 This genetic
linkage suggests a possible functional connection. Knowledge
of PcrB’s enzymatic function may facilitate efforts to elucidate its
cellular role.
The reactions catalyzed by GGGPS, MoeO5, and PcrB
suggest that the TIM barrel family of PTs is dedicated to the
transfer of prenyl groups to oxygen acceptors of triose phos-
phates. We have shown that the oxidation state of the acceptor
and the regiochemistry of reaction can vary depending on the PT.
More remarkably, this family of enzymes can catalyze the
formation of products containing either cis- or trans-allylic double
bonds from trans-prenyl donors.14,23 Thus, relatively small
changes in three-dimensional architecture lead to prenyl transfer
by two distinct mechanisms, one involving direct displacement
and the other requiring bond isomerization and rotation. This is
unprecedented for a single PT family. Structural information on
MoeO5 or its homologues should provide clues to the specific
sequence changes that have led to this dramatic switch in
mechanism.
(3) Payandeh, J.; Fujihashi, M.; Gillon, W.; Pai, E. F. J. Biol. Chem.
2006, 281, 6070–6078.
(4) TIM barrel proteins catalyze a wide range of enzymatic reactions;
their structural details, mechanism, and evolution have been the focus of
numerous studies. See: (a) Reardon, D.; Farber, G. K. FASEB J. 1995, 9,
497–503. (b) Copley, R. R.; Bork, P. J. Mol. Biol. 2000, 303, 627–640.
Lang, D.; Thoma, R.; Henn-Sax, M.; Sterner, R.; Wilmanns, M. Science
2000, 289, 1546–1550. (c) Wierenga, R. K. FEBS Lett. 2001, 492, 193–
198. (d) Nagano, N.; Orengo, C. A.; Thornton, J. M. J. Mol. Biol. 2002,
321, 741–765. (e) Anantharaman, V.; Aravind, L.; Koonin, E. V. Curr.
Opin. Chem. Biol. 2003, 7, 12–20. (f) Gerlt, J. A.; Raushel, F. M. Curr.
Opin. Chem. Biol. 2003, 7, 252–264.
(5) A distinct PT barrel structure has recently been determined for
several aromatic prenyltransferases, including Orf2 and CloQ. See: (a)
Tello, M.; Kuzuyama, T.; Heide, L.; Noel, J. P.; Richard, S. B. Cell. Mol.
Life Sci. 2008, 65, 1459–1463. (b) Kuzuyama, T.; Noel, J. P.; Richard,
S. B. Nature 2005, 435, 983–987.
(6) (a) Chen, A. J.; Zhang, D. L.; Poulter, C. D. J. Biol. Chem. 1993,
268, 21701–21705. (b) Zhang, D. L.; Poulter, C. D. J. Am. Chem. Soc.
1993, 115, 1270–1277. (c) Zhang, D. L.; Poulter, C. D. J. Org. Chem.
1993, 58, 3919–3922. (d) Soderberg, T.; Chen, A. J.; Poulter, C. D.
Biochemistry 2001, 40, 14847–14854.
(7) Nemoto, N.; Oshima, T.; Yamagishi, A. J. Biochem. 2003, 133,
651–657.
(8) Ostash, B.; Doud, E. H.; Lin, C.; Ostash, I.; Perlstein, D. L.; Fuse,
S.; Wolpert, M.; Kahne, D.; Walker, S. Biochemistry 2009, 48, 8830–
8841.
’ ASSOCIATED CONTENT
(9) Ostash, B.; Saghatelian, A.; Walker, S. Chem. Biol. 2007, 14,
257–267.
S
Supporting Information. Experimental Procedures, in-
b
cluding cloning and purification of proteins, and raw MS and
NMR data, complete refs 16 and 21b. This material is available
(10) The cis-geometry observed in the products of cis-prenyl chain
elongating enzymes results from a different type of reaction mechanism.
See: Kharel, Y.; Koyama, T. Nat. Prod. Rep. 2003, 20, 111–118.
(11) Nerolidyl diphosphate is a demonstrated intermediate in the
cyclization-isomerization-cyclization of FPP to 6-, 10-, and 11-mem-
bered ring sesquiterpenes with cis-double bonds. See: (a) Cane, D. E.;
Ha, H. J.;Pargellis, C.; Waldmeier, F.; Swanson, S.; Murthy, P. P. N.
Bioorg. Chem. 1985, 13, 246–265. (b) Cane, D. E.; Ha, H. J. J. Am. Chem.
Soc. 1988, 110, 6865–6870. (c) Cane, D. E.; Pawlak, J. L.; Horak, R. M.;
Hohn, T. M. Biochemistry 1990, 29, 5476–5490.(d) Domingo, V.;
Arteaga, J. F.; del Moral, J. F. Q.;(e) Barrero, A. F. Nat. Prod. Rep.
2009, 26, 115–134. (f) Noel, J. P.; Dellas, N.; Faraldos, J. A.; Zhao, M.;
Hess, B. A.; Smentek, L.; Coates, R. M.; O’Maille, P. E. ACS Chem. Biol.
2010, 5, 377–392.
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We thank Charles Sheahan for training and assistance at the
HMS East Quad NMR Facility. This work was partially sup-
ported by NERCE (NIAID U54AI057159) as well as NIH Grants
GM076710 and AI083214 (S.W.) and GM30301 (D.E.C.). E.H.D.
was supported by an NSF graduate research fellowship, and
D.L.P. was supported by an NIH postdoctoral fellowship. All
LC/MS data were acquired on an Agilent 6520 Q-TOF spectro-
photometer supported by the Taplin Funds for Discovery
Program (P.I.: S.W.). We thank the Biomolecule Production
Core of NERCE for reagents (NIAID U54AI057159).
(12) Rates were measured in triplicate using 1 mM 3PG, 40 μM lipid
pyrophosphate, and 120 nM enzyme. Conversion was <10%. See
Supporting Information (SI) for full details.
(13) We cannot rule out that the intermediate detected could also be
cis,trans-farnesylpyrophosphate.
(14) See SI.
(15) MoeO5 homologues are present and clustered with moeno-
mycin type biosynthetic clusters in S. clavuligerus, Photohrabdus lumi-
nescens subsp. laumondii TTO1, and P. asymbiotica.
(16) Badger, J.; et al. Proteins: Struct., Funct., Bioinf. 2005, 60, 787–796.
(17) Guldan, H.; Sterner, R.; Babinger, P. Biochemistry 2008, 47,
7376–7384.
(18) Rates were measured in triplicate using 1 mM G1P, 40 μM lipid
pyrophosphate, and 3.4 μM enzyme. Conversion was <15%. See SI for
full details.
(19) How FPP is excluded is unknown, although we note that the
hydrophobic tunnel in PcrB has a kink that would require substrates
longer than 10 carbons to bend.
(20) A bacterial enzyme that interconverts glyceraldehyde-phos-
phate and G1P was recently identified, which suggests that bacteria
produce this metabolite for some purpose. See: ref 17.
(21) (a) Ji, Y. D.; Zhang, B.; Van Horn, S. F.; Warren, P.; Woodnutt,
G.; Burnham, M. K. R.; Rosenberg, M. Science 2001, 293, 2266–2269.
(b) Kobayashi, K.; et al. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4678–
4683.
’ REFERENCES
(1) (a) Dewick, P. M. Nat. Prod. Rep. 2002, 19, 181–222. Heide, L.
Curr. Opin. Chem. Biol. 2009, 13, 171–179. (b) Liang, P. H. Biochemistry
2009, 48, 6562–6570.
(2) (a) Liang, P. H.; Ko, T. P.; Wang, A. H. J. Eur. J. Biochem. 2002,
269, 3339–3354. (b) Christianson, D. W. Chem. Rev. 2006, 106, 3412–
3442. (c) Greenhagen, B. T.; O’Maille, P. E.; Noel, J. P.; Chappell, J.
Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 9826–9831. (d) Lane, K. T.;
Beese, L. S. J. Lipid Res. 2006, 47, 681–699. (e) Thulasiram, H. V.;
Erickson, H. K.; Poulter, C. D. Science 2007, 316, 73–76. (f) Vedula,
L. S.; Zhao, Y. X.; Coates, R. M.; Koyama, T.; Cane, D. E.; Christianson,
D. W. Arch. Biochem. Biophys. 2007, 466, 260–266. (g) Shishova, E. Y.;
Yu, F. L.; Miller, D. J.; Faraldos, J. A.; Zhao, Y. X.; Coates, R. M.;
Allemann, R. K.; Cane, D. E.; Christianson, D. W. J. Biol. Chem. 2008,
283, 15431–15439. (h) Aaron, J. A.; Lin, X.; Cane, D. E.; Christianson,
D. W. Biochemistry 2010, 49, 1787–1797.
1272
dx.doi.org/10.1021/ja109578b |J. Am. Chem. Soc. 2011, 133, 1270–1273