N. Louaisil, P. D. Pham, F. Boeda, D. Faye, A.-S. Castanet, S. Legoupy
FULL PAPER
CDCl3): δ = 159.5 (20-C), 137.3 (J = 20 Hz, 19-C), 136.2 (2-C),
131.5 (J = 203 Hz, 17-C), 122.0 (3-C or 4-C), 121.9 (3-C or 4-C),
113.7 (J = 22 Hz, 18-C), 57.8 (21-C), 49.8 (7-C), 45.0 (5-C), 33.5
(J = 28 Hz, 11-C), 30.1 (8-C), 28.9 (J = 10 Hz, 15-C), 27.2 (J =
28 Hz, 14-C), 26.5 (J = 10 Hz, 10-C), 25.6 (9-C), 15.5 (6-C), 13.5
(16-C), 9.4 (J = 165 Hz, 12-C), 9.3 (J = 165 Hz, 13-C) ppm. 119Sn
NMR (149 MHz, CDCl3): δ = –41.9 ppm. HRMS (ESI): calcd. for
C26H45N2OSn [M – Br]+ 521.2548; found 521.2582.
Acknowledgments
We thank CNRS (Centre National de la Recherche Scientifique),
the Université du Maine, the Agence Nationale de la Recherche
(Grant N°: ANR-07-JCJC-0026-01), and the French MENRT
(Ministère de l’Education Nationale de la Recherche et de Technol-
ogie) for a fellowship to P.D.P. We also thank Amélie Durand for
technical support.
1-{6-[Dibutyl(4-fluorophenyl)stannyl]hexyl}-3-ethyl-1H-imidazol-3-
1
ium Bromide (31): Yield: 88%. H NMR (400 MHz, CDCl3): δ =
10.32 (s, 1 H, 2-H), 7.72 (s, 1 H, 3-H or 4-H), 7.46 (s, 1 H, 3-H or
4-H), 7.32 (dd, J = 8.5 Hz, JH,F = 8.5 Hz, 2 H, Harom.), 6.9 (dd, J
= 8.5 Hz, JH,F = 8.5 Hz, 2 H, Harom.), 4.38 (q, J = 7.1 Hz, 2 H, 5-
H), 4.24 (t, J = 7.7 Hz, 2 H, 7-H), 1.70–1.90 (m, 2 H, 8-H), 1.52
(t, J = 7.1 Hz, 3 H, 6-H), 1.35–1.50 (m, 6 H, 10-H and 15-H), 1.15–
1.35 (m, 8 H, 9-H, 11-H, and 14-H), 0.85–1.10 (m, 6 H, 12-H and
13-H), 0.80 (t, J = 7.1 Hz, 6 H, 16-H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 162.9 (d, JC,F = 250 Hz, 20-C), 137.6 (d, JC,F = 6 Hz,
J = 18 Hz, Carom.), 136.3 (17-C), 136.2 (2-C), 122.1 (3-C or 4-C),
121.9 (3-C or 4-C), 114.9 (d, JC,F = 19 Hz, J = 22 Hz, Carom.), 49.8
(5-C), 45.0 (7-C), 33.5 (J = 28 Hz, 11-C), 30.1 (8-C), 28.8 (J =
10 Hz, 15-C), 27.1 (J = 28 Hz, 14-C), 26.4 (J = 10 Hz, 10-C), 25.6
(9-C), 15.5 (6-C), 13.5 (16-C), 9.5 (J = 165 Hz, 12-C), 9.4 (J =
165 Hz, 13-C) ppm. 19F NMR (376 MHz, CDCl3): δ = –114.7 ppm.
119Sn NMR (149 MHz, CDCl3): = δ–40.5 (d, JSn,F = 8.1 Hz) ppm.
HRMS (ESI): calcd. for C25H42N2FSn [M – Br]+ 509.2349; found
509.2386.
[1]
a) J. K. Stille, Angew. Chem. 1986, 98, 504-519; Angew. Chem.
Int. Ed. Engl. 1986, 25, 508–524; b) V. Farina in Comprehensive
Organometallic Chemistry II (Eds.: E. W. Abel, F. G. A. Stone,
G. Wilkinson), Pergamon, Oxford, 1995, vol. 12, ch. 3.4; c)
T. N. Mitchell in Metal-Catalyzed Cross-Coupling Reactions
(Eds.: F. Diederich, P. J. Stang), Wiley-VCH, New York, 1998,
ch. 4; d) V. Farina, V. Krishnamurthy, V. J. Scott, The Stille
Reaction, Wiley, New York, 1998; e) P. Espinet, A. M. Echav-
arren, Angew. Chem. Int. Ed. 2007, 43, 4704–4734.
a) . M. Dowlut, D. Mallik, M. G. Organ, Chem. Eur. J. 2010,
16, 4279–4283; b) K. C. Nicolaou, E. J. Sorensen, Classics in
Total Synthesis, VCH, Weinheim, 1996; c) K. C. Nicolaou,
S. A. Snyder, Classics in Total Synthesis II, Wiley-VCH,
Weinheim, 2003; d) J. Tsuji, Palladium Reagents and Catalysts,
Wiley, Chichester, 1995.
a) U. Gerigk, M. Gerlach, W. P. Neumann, R. Vieler, V. Wein-
tritt, Synthesis 1990, 448–452; b) M. Gerlach, F. Jördens, H.
Kuhn, W. P. Neumann, J. Org. Chem. 1991, 56, 5971–5972; c)
G. Dumartin, G. Ruel, J. Kharboutli, B. Delmond, M.-F. Con-
nil, B. Jousseaume, M. Pereyre, Synlett 1994, 952–954.
a) E. J. Enholm, J. P. Schulte II, Org. Lett. 1999, 1, 1275–1277;
b) J. Cossy, C. Rasamison, D. Gomez Pardo, J. Org. Chem.
2001, 66, 7195–7198; c) N. Carrera, E. Gutiérrez, R. Benavente,
M. M. Villavieja, A. C. Albéniz, P. Espinet, Chem. Eur. J. 2008,
14, 10141–10148; d) G. Kerric, E. Le Grognec, F. Zammattio,
M. Paris, J.-P. Quintard, J. Organomet. Chem. 2010, 695, 103–
110; e) J.-M. Chrétien, A. Mallinger, F. Zammattio, E.
Le Grognec, M. Paris, G. Montavon, J.-P. Quintard, Tetrahe-
dron Lett. 2007, 48, 1781–1785.
[2]
[3]
[4]
1-{6-[Dibutyl(thiophen-2-yl)stannyl]hexyl}-3-ethyl-1H-imidazol-3-
1
ium Bromide (32): Yield: 79%. H NMR (400 MHz, CDCl3): δ =
10.47 (s, 1 H, 2-H), 7.64 (d, J = 4.7 Hz, 1 H, 20-H), 7.63 (s, 1 H,
3-H or 4-H), 7.40 (s, 1 H, 3-H or 4-H), 7.26 (dd, J = 3.0, 4.7 Hz,
1 H, 19-H), 7.18 (d, J = 3.0 Hz, 1 H, 18-H), 4.44 (q, J = 7.5 Hz, 2
H, 5-H), 4.30 (t, J = 7.5 Hz, 2 H, 7-H), 1.80–1.95 (m, 2 H, 8-H),
1.60 (t, J = 7.5 Hz, 3 H, 6-H), 1.50–1.60 (m, 6 H, 10-H and 15-H),
1.25–1.40 (m, 8 H, 9-H, 11-H, and 14-H), 1.00–1.15 (m, 6 H, 12-
H and 13-H), 0.89 (t, J = 7.1 Hz, 6 H, 16-H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 136.1 (2-C), 135.5 (17-C), 134.9 (J = 13 Hz,
19-C), 130.3 (20-C), 127.6 (J = 20 Hz, 18-C), 122.1 (3-C or 4-C),
121.8 (3-C or 4-C), 49.6 (7-C), 44.8 (5-C), 33.2 (J = 28 Hz, 11-C),
29.9 (8-C), 28.6 (J = 10 Hz, 15-C), 26.9 (J = 28 Hz, 14-C), 26.1 (J
= 10 Hz, 10-C), 25.4 (9-C), 15.4 (6-C), 13.3 (16-C), 10.5 (J =
165 Hz, 12-C), 10.5 (J = 165 Hz, 13-C) ppm. 119Sn NMR
(149 MHz, CDCl3): δ = –40.0 ppm. HRMS (ESI): calcd. for
C23H41N2SSn [M – Br]+ 497.2007; found 497.2021.
[5]
[6]
J.-C. Poupon, D. Marcoux, J.-M. Cloarec, A. B. Charette, Org.
Lett. 2007, 9, 3591–3594.
a) R. E. Maleczka, W. P. Gallagher, I. Terstiege, J. Am. Chem.
Soc. 2000, 122, 384–385; b) W. P. Gallagher, I. Terstiege, R. E.
Maleczka, J. Am. Chem. Soc. 2001, 123, 3194–3204; c) R. E.
Maleczka, W. P. Gallagher, Org. Lett. 2001, 3, 4173–4176.
a) E. Fouquet, M. Pereyre, T. Roulet, J. Chem. Soc., Chem.
Commun. 1995, 2387–2388; b) E. Fouquet, M. Pereyre, A. L.
Rodriguez, J. Org. Chem. 1997, 62, 5242–5243; c) A. Herve,
A. L. Rodriguez, E. Fouquet, J. Org. Chem. 2005, 70, 1953–
1956; d) K. Olofsson, S.-Y. Kim, M. Larhed, D. P. Curran, A.
Hallberg, J. Org. Chem. 1999, 64, 4539–4541.
a) N. Miyaura, N. Suzuki, Chem. Rev. 1995, 95, 2457–2483; b)
B. S. Yong, S. P. Nolan, Chemtracts: Org. Chem. 2003, 205–
221; c) N. T. S. Phan, M. Van Der Sluys, C. W. Jones, Adv.
Synth. Catal. 2006, 348, 609–679.
a) For the mechanism of formation of biphenyl byproduct 6
see: P. D. Pham, J. Vitz, C. Chamignon, A. Martel, S. Legoupy,
Eur. J. Org. Chem. 2009, 3249–3257; b) P. D. Pham, S. Legoupy,
Tetrahedron Lett. 2009, 50, 3780–3782; c) P. D. Pham, P. Bertus,
S. Legoupy, Chem. Commun. 2009, 6207–6209; d) J. Vitz, D. H.
Mac, S. Legoupy, Green Chem. 2007, 9, 431–433.
[7]
General Procedure for Recycling Tin Compound 29: To a solution
of ionic liquid 29 (950 mg, 1.780 mmol) was added Pd(PPh3)4
(102 mg, 5 mol-%) and aryl bromide 9 or 34 (290 μL, 1.780 mmol).
The mixture was stirred for 5 h at 80 °C. Ionic liquid 50 (1.076 g)
was separated from product 37 or 38 by extraction with ether. The
organic layer was concentrated, and the crude product was purified
by silica gel flash column chromatography to afford allyl com-
pound 37 or 38 (290 mg, 86%). Ionic liquid 29 was heated (70 °C)
under high vacuum. After cooling to room temperature, allylmag-
nesium bromide (1 m in Et2O, 5.6 mL, 3.228 mmol) was added in
THF (30 mL) at room temperature. The mixture was stirred for 2 h
at room temperature, then treated with H2O. The organic layer was
extracted with CH2Cl2, dried with MgSO4, filtered, and concen-
trated under reduced pressure. The crude product was purified by
silica gel flash column chromatography to afford ionic liquid 29
(710 mg, 75% in two steps) as a yellow oil.
[8]
[9]
[10]
[11]
[12]
A. F. Littke, L. Schwarz, G. C. Fu, J. Am. Chem. Soc. 2002,
124, 6343–6348.
G. D. Allred, L. S. Liebeskind, J. Am. Chem. Soc. 1996, 118,
2748–2749.
W. J. Scott, J. K. Stille, J. Am. Chem. Soc. 1986, 108, 3033–
3040.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details and copies of the 1H and 13C NMR spec-
tra.
148
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 143–149