H. Kamisaki et al. / Journal of Organometallic Chemistry 696 (2011) 42e45
45
In summary, we have developed concise synthetic routes to the
key intermediates of salinosporamide A and its analogs. Hydro-
amidation was shown to be feasible even for functionalized
substrates. It is worth noting that during the synthesis, the formyl
group which initially acted as a protecting group, was incorporated
into the molecular framework by its chemoselective activation with
the rhodium catalyst. The results described herein are a progressive
attempt to apply hydroamidation to total synthesis. Chemo-
selective activation of an inert functionality such as formamide
with a transition metal catalyst was shown to be an effective and
attractive synthetic strategy in a multistep synthesis. Further
investigations directed toward the total synthesis of salinospor-
amide A are currently ongoing in our laboratories.
3.53 (d, 1H, J ¼ 12.2 Hz), 3.41 (s, 3H), 3.07 (d, 1H, J ¼ 12.2 Hz), 2.40
(dq, 2H, J1 ¼14.7 Hz, J2 ¼ 7.4 Hz), 1.37 (s, 3H), 1.36 (s, 3H), 1.01 (t, 3H,
J ¼ 7.4 Hz); 13C NMR (126 MHz, CDCl3,
d) 168.4, 159.0, 143.0, 128.8,
114.0, 98.8, 93.6, 70.6, 62.7, 62.0, 60.2, 55.6, 55.2, 43.0, 26.4, 22.5,
20.5, 13.5; IR (ATR) 1685 cmꢀ1; HRMS (FABþ) C22H31NO6: (Mþ)
405.2151. Found 405.2149.
Acknowledgement
This work was supported in part by Grants-in-Aid for Scientific
Research B (No. 193990005) (Y.T.) and for Young Scientists B (No.
20790008) (Y.Y.), and “Targeted Proteins Research Program” from
the Ministry of Education, Culture, Sports, Science and Technology
of Japan.
3. Experimental
References
3.1. General procedure for rhodium-catalyzed intramolecular
hydroamidation
[1] R.H. Feling, G.O. Buchanan, T.J. Mincer, C.A. Kauffman, P.R. Jensen, W. Fenical,
Angew. Chem. Int. Ed. 42 (2003) 355e357.
[2] For a review of synthetic studies, see: (a) M. Shibasaki, M. Kanai, N. Fukuda,
Chem. Asian J. 2 (2007) 20e38;
(b) B.C. Potts, K.S. Lam, Mar. Drugs 8 (2010) 835e880.
[3] (a) L.R. Reddy, P. Saravanan, E.J. Corey, J. Am. Chem. Soc. 126 (2004)
6230e6231;
A mixture of formamide (0.0252 mmol) and Rh4(CO)12 (3.77 mg,
0.00504 mmol) in xylene (0.25 ml) was stirred at 130 ꢁC for 2 h
under Ar atmosphere. After cooling and evaporation of the volatile
materials, the crude residue was purified by SiO2 column chro-
matography to give lactam.
(b) L.R. Reddy, J.-F. Fournier, B.V.S. Reddy, E.J. Corey, Org. Lett. 7 (2005)
2699e2701;
(c) A. Endo, S.J. Danishefsky, J. Am. Chem. Soc. 127 (2005) 8298e8299;
(d) G. Ma, H. Nguyen, D. Romo, Org. Lett. 9 (2007) 2143e2146;
(e) T. Ling, V.R. Macherla, R.R. Manam, K.A. McArthur, B.C.M. Potts, Org. Lett. 9
(2007) 2289e2292;
(f) V. Caubert, J. Masse, P. Retailleau, N. Langlois, Tetrahedron Lett. 48 (2007)
381e384;
3.1.1. Analytical data for lactam 6a
1H NMR (500 MHz, CDCl3,
d) 7.34e7.30 (m, 4H), 7.18e7.15 (m,
4H), 6.76 (d, 1H, J ¼ 8.6 Hz), 6.74 (ddd, 1H, J1 ¼ J2 ¼ 4.8 Hz,
J3 ¼ 2.1 Hz), 5.03 (dd, 1H, J1 ¼ 6.7 Hz, J2 ¼ 2.1 Hz), 4.62 (d, 1H,
J ¼ 15.3 Hz), 4.54 (dd, 1H, J1 ¼ 4.8 Hz, J2 ¼ 1.5 Hz), 4.53 (dd, 1H,
J1 ¼ 4.8 Hz, J2 ¼ 1.5 Hz), 4.47 (d, 1H, J ¼ 15.3 Hz), 4.27 (d, 1H,
J ¼ 11.9 Hz), 4.21 (d,1H, J ¼ 11.9 Hz), 3.87 (d,1H, J ¼ 10.4 Hz), 3.85 (d,
1H, J ¼ 10.4 Hz), 3.76 (s, 3H), 3.54 (s, 3H), 3.45 (d, 1H, J ¼ 6.7 Hz),
(g) K. Takahashi, M. Midori, K. Kawano, J. Ishihara, S. Hatakeyama, Angew.
Chem. Int. Ed. 47 (2008) 6244e6246;
ꢀ
(h) T. Fukuda, K. Sugiyama, S. Arima, Y. Harigaya, T. Nagamitsu, S. Omura, Org.
Lett. 10 (2008) 4239e4242;
(i) N.P. Mulholland, G. Pattenden, I.A.S. Walters, Org. Biomol. Chem. 6 (2008)
2782e2789;
(j) I.V. Margalef, L. Rupnicki, H.W. Lam, Tetrahedron 64 (2008) 7896e7901;
(k) J.R. Struble, J.W. Bode, Tetrahedron 65 (2009) 4957e4967;
(l) T. Momose, Y. Kaiya, J. Hasegawa, T. Sato, N. Chida, Synthesis (2009)
2983e2991;
0.91 (s, 9H), 0.11 (s, 6H); 13C NMR (126 MHz, CDCl3,
d) 171.1, 167.8,
158.8, 137.3, 136.5, 133.1, 129.6, 128.6, 128.5, 127.9, 127.6, 113.6, 73.3,
70.6, 67.8, 61.2, 55.2, 52.6, 44.7, 29.6, 25.8, ꢀ0.1, ꢀ5.5; IR (ATR) 3343,
1673 cmꢀ1; HRMS (FABþ) C30H41NO7Si: (Mþ) 555.2652. Found
555.2657.
(m) T. Ling, B.C. Potts, V.R. Macherla, J. Org. Chem. 75 (2010) 3882e3885.
[4] For synthesis of analogues through engineered biosynthesis, see: (a)
R.P. McGlinchey, M. Nett, A.S. Eustáquio, R.N. Asolkar, W. Fenical, B.S. Moore,
J. Am. Chem. Soc. 130 (2008) 7822e7823;
(b) A.S. Eustáquio, B.S. Moore, Angew. Chem. Int. Ed. 47 (2008) 3936e3938.
[5] (a) Y. Kobayashi, H. Kamisaki, R. Yanada, Y. Takemoto, Org. Lett. 8 (2006)
2711e2713;
3.1.2. Analytical data for lactam 6a0
1H NMR (500 MHz, CDCl3,
d) 7.34e7.31 (m, 3H), 7.21 (d, 2H,
J ¼ 7.0 Hz), 7.16 (d, 1H, J ¼ 8.6 Hz), 6.74 (d, 2H, J ¼ 8.6 Hz), 6.64 (dd,
1H, J1 ¼ 6.4 Hz, J2 ¼ 3.1 Hz), 5.11 (m, 1H), 4.63e4.52 (m, 3H),
4.39e4.30 (m, 3H), 3.90 (d, 1H, J ¼ 10.7 Hz), 3.82 (d, 1H, J ¼ 10.7 Hz),
3.74 (s, 3H), 3.39 (s, 3H), 0.91 (s, 9H), 0.13 (s, 3H), 0.13 (s, 3H); 13C
(b) Y. Kobayashi, H. Kamisaki, H. Takeda, Y. Yasui, R. Yanada, Y. Takemoto,
Tetrahedron 63 (2007) 2978e2989;
(c) Y. Yasui, H. Kamisaki, Y. Takemoto, Org. Lett. 10 (2008) 3303e3306;
(d) Y. Yasui, Y. Takemoto, Chem. Rec. 8 (2008) 386e394;
(e) H. Kamisaki, Y. Yasui, Y. Takemoto, Tetrahedron Lett. 50 (2009)
2589e2592;
NMR (126 MHz, CDCl3, d) 169.8, 168.6, 158.9, 137.5, 134.0, 132.8,
130.3, 128.8, 128.4, 127.9, 127.8, 113.5, 73.2, 71.4, 69.4, 66.6, 62.3,
(f) Y. Yasui, H. Kamisaki, T. Ishida, Y. Takemoto, Tetrahedron 66 (2010)
1980e1989.
55.2, 52.0, 44.3, 25.8, 18.4, ꢀ0.1, ꢀ5.7; IR (ATR) 3366, 1670 cmꢀ1
;
HRMS (FABþ) C30H42NO7Si: (MHþ) 556.2731. Found 556.2731.
[6] Y. Kobayashi, H. Kamisaki, K. Yanada, R. Yanada, Y. Takemoto, Tetrahedron
Lett. 46 (2005) 7549e7552.
[7] For a review, see: (a) T. Morimoto, K. Kakiuchi, Angew. Chem. Int. Ed. 43
(2004) 5580e5588 For examples, see;
3.1.3. Analytical data for lactam 10c
1H NMR (500 MHz, CDCl3,
d) 7.25 (d, 2H, J ¼ 8.8 Hz), 6.88 (dd,1H,
(b) Y. Tsuji, S. Yoshii, T. Ohsumi, T. Kondo, Y. Watanabe, J. Organomet. Chem.
331 (1987) 379e385;
(c) T. Kondo, A. Tanaka, S. Kotachi, Y. Watanabe, J. Chem. Soc. Chem. Commun.
(1995) 413e414;
(d) T. Kondo, T. Okada, T. Mitsudo, Organometallics 18 (1999) 4123e4127;
(e) S. Ko, H. Han, S. Chang, Org. Lett. 5 (2003) 2687e2690;
J1 ¼ J2 ¼ 6.4 Hz), 6.84 (d, 2H, J ¼ 8.8 Hz), 4.84 (s, 1H), 4.65 (s, 2H),
4.56 (d, 2H, J ¼ 5.2 Hz), 4.06 (d, 1H, J ¼ 12.2 Hz), 3.93 (d, 1H,
J ¼ 12.2 Hz), 3.79 (s, 3H), 3.53 (d, 1H, J ¼ 11.9 Hz), 3.38 (s, 3H), 3.10
(d, 1H, J ¼ 11.9 Hz), 1.36 (s, 6H), 0.92 (s, 9H), 0.10 (s, 3H), 0.098 (s,
(f) L.J. Gooben, J.E. Rauhaus, G. Deng, Angew. Chem. Int. Ed. 44 (2005)
3H); 13C NMR (126 MHz, CDCl3,
d) 168.0, 159.1, 139.4, 128.9, 114.1,
4042e4045;
98.8, 94.0, 71.0, 62.8, 62.2, 60.3, 55.6, 55.2, 43.2, 26.4, 25.8, 20.5,
18.2, ꢀ5.35, ꢀ5.39; IR (ATR) 1692 cmꢀ1; HRMS (FABþ) C27H43NO7Si:
(Mþ) 521.2809. Found 521.2789.
(g) D.C.D. Nath, C.M. Fellows, T. Kobayashi, T. Hayashi, Aust. J. Chem. 59 (2006)
218e224;
(h) L.J. Goo
ben, K.S.M. Salih, M. Blanchot, Angew. Chem. Int. Ed. 47 (2008)
8492e8495.
[8] J. Hitce, P. Retailleau, O. Baudoin, Chem. Eur. J. 13 (2007) 792e799.
[9] V.R. Macherla, S.S. Mitchell, R.R. Manam, K.A. Reed, T.-H. Chao, B. Nicholson,
G. Deyanat-Yazdi, B. Mai, P.R. Jensen, W.F. Fenical, S.T.C. Neuteboom, K.S. Lam,
M.A. Palladino, B.C.M. Potts, J. Med. Chem. 48 (2005) 3684e3687.
[10] T. Fukuhara, C. Hasegawa, S. Hara, Synthesis (2007) 1528e1534.
[11] D. Hoppe, H. Schmincke, H.-W. Kleemann, Tetrahedron 45 (1989) 687e694.
3.1.4. Analytical data for lactam 13a
1H NMR (500 MHz, CDCl3,
d
) 7.25 (d, 2H, J ¼ 8.9 Hz), 6.84 (d, 2H,
J ¼ 8.9 Hz), 6.83 (t, 1H, J ¼ 14.7 Hz), 4.83 (s, 1H), 4.66 (s, 2H), 4.55 (s,
2H), 4.09 (d, 1H, J ¼ 12.2 Hz), 3.94 (d, 1H, J ¼ 12.2 Hz), 3.79 (s, 3H),