pubs.acs.org/joc
SCHEME 1. Nickel-Catalyzed Suzuki-Miyaura Cross-Cou-
plings of Aryl Carbamates and Sulfamates with Aryl Boronic
Rapid Nickel-Catalyzed Suzuki-Miyaura Cross-
Couplings of Aryl Carbamates and Sulfamates
Utilizing Microwave Heating
Acids9-11
Mostafa Baghbanzadeh,† Christian Pilger,‡ and
C. Oliver Kappe*,†
†Christian Doppler Laboratory for Microwave Chemistry
(CDLMC) and Institute of Chemistry, Karl-Franzens-
University, Graz, Heinrichstrasse 28, 8010 Graz, Austria, and
‡BASF SE, 67056 Ludwigshafen, Germany
far limited their use. To address this concern, other types
of phenol derivatives such as ethers,4 phosphoramides,5
carboxylates,6 phenolate,7 and sulfate8 derivatives have been
intensely investigated in the past few years in a variety of Ni-
catalyzed cross-coupling reactions.
Received December 10, 2010
Recently, the groups of Garg,9 Snieckus,10 and Shi11 have
independently introduced the use of aryl carbamates and/or
sulfamates as electrophilic coupling partners for Ni-cata-
lyzed Suzuki-Miyaura cross-coupling reactions (Scheme 1).
The ready availability, pronounced stability under a variety
of reaction conditions, and ease of preparation of these
phenolic substrates makes these coupling protocols highly
attractive from the synthetic point of view. In all three
reports the commercially available and air/moisture stable
Ni(PCy3)2Cl2 catalyst was employed.9-11
High-speed and scalable nickel-catalyzed cross-coupling
of arylboronic acids with aryl carbamates and sulfamates
is achieved by using sealed-vessel microwave processing.
While Garg9 used standard aryl boronic acids as nucleo-
philic coupling partners for carbamates and sulfamates, the
work of Snieckus10 and Shi11 described the use of aryl
boroxines for cross-couplings with carbamates. Despite the
advantages of these novel Suzuki-Miyaura protocols, the
coupling efficiency with aryl boronic acids in most of these
transformations (except for aryl sulfamates) is only moder-
ate for nonfused aromatic aryl substrates, even in the pres-
ence of a large excess of the boronic acid (Scheme 1).9-11
Most importantly, these methods suffer from exceedingly
long reaction times at an elevated temperature regime
(typically 5-24 h at 110-150 °C) and the necessity to employ
In recent years Ni-catalyzed carbon-carbon cross-cou-
pling transformations involving phenol derivatives as elec-
trophiles have attracted a substantial amount of interest.1 In
contrast to the more commonly used aryl halides, phenol
derivatives originate from different precursors and therefore
represent a valuable extension of the spectrum of electro-
philic cross-coupling partners. Of equal importance, re-
placement of the traditionally used Pd with less expensive
Ni-based catalyst systems can significantly lower costs for
cross-couplings of this type when performed on scale. Aryl
triflates2 and related sulfonates3 have frequently been inves-
tigated even at the early stages of Ni-catalyzed cross-cou-
pling chemistry, but their high cost and/or instability has so
(4) (a) Dankwardt, J. W. Angew. Chem., Int. Ed. 2004, 43, 2428. (b) Guan,
B.; Xiang, S.; Wu, T.; Sun, Z.; Wang, B.; Zhao, K.; Shi, Z. Chem. Commun.
2008, 12, 1437. (c) Tobisu, M.; Shimasaki, T.; Chatani, N. Angew. Chem., Int.
Ed. 2008, 47, 4866.
(5) Zhao, Y.-L.; Li, Y.; Li, Y.; Gao, L.-X.; Han, F.-S. Chem.;Eur. J.
2010, 16, 4991.
(6) (a) Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem. Soc. 2008,
130, 14422. (b) Guan, B.-T.; Wang, Y.; Li, B.-J.; Yu, D.-G.; Shi, Z.-J. J. Am.
Chem. Soc. 2008, 130, 14468. (c) Li, B.-J.; Li, Y.-Z.; Lu, X.-Y.; Liu, J.; Guan,
B.-T.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 10124. (d) Sun, C.-L.;
Wang, Y.; Zhou, X.; Wu, Z.-H.; Li, B.-J.; Guan, B.-T.; Shi, Z.-J. Chem.;
Eur. J. 2010, 16, 5844. (e) Shimasaki, T.; Tobisu, M.; Chatani, N. Angew.
Chem., Int. Ed. 2010, 49, 2929.
(7) Yu, D.-G.; Li, B.-J.; Zheng, S.-F.; Guan, B.-T.; Wang, B.-Q.; Shi, Z.-J.
Angew. Chem., Int. Ed. 2010, 49, 4566.
(8) Guan, B.-T.; Lu, X.-Y.; Zheng, Y.; Yu, D.-G.; Wu, T.; Li, K.-L.; Li,
B.-J.; Shi, Z.-J. Org. Lett. 2010, 12, 396.
(1) For reviews, see: (a) Rosen, B. M.; Quasdorf, K W.; Wilson, D. A.;
Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. DOI:
10.1021/cr100259t. Published Online: Dec 6, 2010. (b) Yu, D.-G.; Li, B.-J;
Shi, Z.-J. Acc. Chem. Res. 2010, 43, 1486.
(2) (a) Quesnelle, C. A.; Familoni, O. B.; Snieckus, V. Synlett 1994, 349.
(b) Han, J. W.; Tokunaga, N.; Hayashi, T. Synlett 2002, 871. (c) Melzig, L.;
Gavryushin, A.; Knochel, P. Org. Lett. 2007, 9, 5529. (d) Liao, X.; Weng, Z.;
Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 195. (e) Canivet, J.; Yamaguchi,
J.; Ban, I.; Itami, K. Org. Lett. 2009, 11, 1733.
(3) (a) Percec, V.; Bae, J. Y.; Hill, D. H. J. Org. Chem. 1995, 60, 1060. (b)
Ueda, M.; Saitoh, A.; Oh-tani, S.; Miyaura, N. Tetrahedron 1998, 54, 13079.
(c) Tang, Z.-Y.; Hu, Q.-S. J. Am. Chem. Soc. 2004, 126, 3058. (d) Molander,
G. A.; Beaumard, F. Org. Lett. 2010, 12, 4022. (e) Fan, X.-H.; Yang, L.-M.
(9) Quasdorf, K. W.; Reiner, M.; Petrova, K. V.; Garg, N. K. J. Am.
Chem. Soc. 2009, 131, 17748.
(10) Antoft-Finch, A.; Blackburn, T.; Snieckus, V. J. Am. Chem. Soc.
2009, 131, 17750.
€
Eur. J. Org. Chem. 2010, 2457. (f) Tu, T.; Mao, H.; Herbert, C.; Xu, M.; Dotz,
K. H. Chem. Commun. 2010, 46, 7796.
(11) Xu, L.; Li, B.-J.; Wu, Z.-H.; Lu, X.-Y.; Guan, B.-T.; Wang, B.-Q.;
Zhao, K.-Q.; Shi, Z.-J. Org. Lett. 2010, 12, 884.
DOI: 10.1021/jo1024464
r
Published on Web 01/20/2011
J. Org. Chem. 2011, 76, 1507–1510 1507
2011 American Chemical Society