LETTER
Cross-Coupling Reactions between C(sp2)–H and C(sp3)–H Bonds
2885
(2) For recent examples of carbon–metal and carbon–hydrogen
bond coupling, see: (a) Giri, R.; Maugel, N.; Li, J.-J.; Wang,
D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am.
Chem. Soc. 2007, 129, 3510. For reviews, see: (b) Li, B.-J.;
Yang, S.-D.; Shi, Z.-J. Synlett 2008, 949. (c) Chen, X.;
Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed.
2009, 48, 5094.
(3) For recent examples of carbon–hydrogen and carbon–
halogen bond coupling, see: (a) Wang, X.; Lane, B. S.;
Sames, D. J. Am. Chem. Soc. 2005, 127, 4996. (b) Oi, S.;
Sakai, K.; Inoue, Y. Org. Lett. 2005, 7, 4009.
ence of catalytic amounts of an iridium complex,
[Cp*IrCl2]2, a rhenium complex, [ReBr(CO)3(thf)]2, and 4
Å molecular sieves in toluene at 115 °C for 24 hours, gave
1,3-diphenylisobenzofuran (6) in 91% yield (Scheme 4).
Both iridium-catalyzed dehydrogenation of 1a and man-
ganese-catalyzed C–H bond activation followed by the in-
sertion of an aldehyde proceeded in toluene. Therefore,
this reaction could be performed in one operation.
[Cp*IrCl2]2 (1.0 mol%)
Ph
(c) Kobayashi, K.; Sugie, A.; Takahashi, M.; Masui, K.;
Mori, A. Org. Lett. 2005, 7, 5083. (d) Ackermann, L.;
Althammer, A.; Born, R. Angew. Chem. Int. Ed. 2006, 45,
2619. (e) Yanagisawa, S.; Sudo, T.; Noyori, R.; Itami, K.
J. Am. Chem. Soc. 2006, 128, 11748. (f) Berman, A. M.;
Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem.
Soc. 2008, 130, 14926. (g) Do, H.-Q.; Daugulis, O. J. Am.
Chem. Soc. 2007, 129, 12404. For reviews, see: (h) Bellina,
F.; Rossi, R. Tetrahedron 2009, 65, 10269. (i) Daugulis, O.
Top. Curr. Chem. 2010, 292, 57. (j) Beck, E. M.; Gaunt, M.
J. Top. Curr. Chem. 2010, 292, 85. (k) Bouffard, J.; Itami,
K. Top. Curr. Chem. 2010, 292, 231.
2 (2.0 equiv)
[ReBr(CO)3(thf)]2 (2.5 mol%)
4 Å MS
Ph
O
Ph
OH
N
+
toluene, 115 °C, 24 h
Ph
5
1a (2.0 equiv)
Ph
6 91%
Scheme 4
Using an alcohol with an olefin moiety, 1k, oxidation of
1k, insertion of the formed aldehyde into a C–H bond of
aromatic ketimine 5, intramolecular nucleophilic cycliza-
tion, elimination of aniline (formation of isobenzofuran
derivative), and intramolecular cyclization by Diels–Al-
der reaction occurred. After dehydration under acidic con-
ditions, naphthalene derivative 7 was obtained in 45%
yield (Scheme 5).
(4) For recent examples of carbon–hydrogen and carbon–
hydrogen bond coupling, see: (a) Stuart, D. R.; Fagnou, K.
Science 2007, 316, 1172. (b) Hull, K. L.; Sanford, M. S.
J. Am. Chem. Soc. 2007, 129, 11904. (c) Zhao, X.; Yeung,
C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 5837.
(5) For representative examples, see: (a) Sezen, B.; Sames, D.
J. Am. Chem. Soc. 2005, 127, 5284. (b) Li, Z.; Li, C.-J.
J. Am. Chem. Soc. 2005, 127, 6968. (c) Wang, D.-H.; Wasa,
M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 7190.
(d) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (e) Wasa, M.;
Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3680.
(f) Qian, B.; Guo, S.; Shao, J.; Zhu, Q.; Yang, L.; Xia, C.;
Huang, H. J. Am. Chem. Soc. 2010, 132, 3650.
In summary, we have succeeded in cross-coupling reac-
tions between sp2- and sp3-carbon bonds by iridium-cata-
lyzed dehydrogenation of primary alcohols and sequential
manganese-catalyzed insertion of the formed aldehydes
into a C–H bond of aromatic or olefinic compounds.13 We
hope that this sequential methodology will provide useful
insight to realize cross-coupling reactions between sub-
strates of difficulty.
(g) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010,
132, 3965.
(6) Fujita, K.-i.; Furukawa, S.; Yamaguchi, R. J. Organomet.
Chem. 2002, 649, 289.
(7) (a) Kuninobu, Y.; Nishina, Y.; Takeuchi, T.; Takai, K.
Angew. Chem. Int. Ed. 2007, 46, 6518. In addition, we have
also reported on rhenium-catalyzed insertion of aldehydes
into a C–H bond of aromatic and olefinic compounds. See
also: (b) Kuninobu, Y.; Nishina, Y.; Nakagawa, C.; Takai,
K. J. Am. Chem. Soc. 2006, 128, 12376. (c) Kuninobu, Y.;
Nishina, Y.; Takai, K. Tetrahedron 2007, 63, 8463.
(d) Kuninobu, Y.; Fujii, Y.; Matsuki, T.; Nishina, Y.; Takai,
K. Org. Lett. 2009, 11, 2711.
Supporting Information for this article is available online at
Acknowledgment
This work was partially supported by the Ministry of Education,
Culture, Sports, Science, and Technology of Japan.
(8) Fujita, K.-i.; Tanino, N.; Yamaguchi, R. Org. Lett. 2007, 9,
109.
References and Notes
(9) When (E)-3-methyl-3-penten-2-one (2) was used as a
hydrogen acceptor, 3-methylpentan-2-one was formed. This
result shows that the olefinic moiety of 2 was reduced.
(10) Investigation of hydrogen acceptors in dehydrogenation of
alcohol 1a {hydrogen acceptor: 1.5 equiv; [Cp*IrCl2]2: 0.50
mol%; K2CO3: 5.0 mol%; toluene, 150 °C; 18 h}: (E)-3-
(1) Metal-Catalyzed Cross Coupling Reactions, 2nd ed., Vol. 1
and 2; de Meijere, A.; Diederich, F., Eds.; Wiley-VCH:
Weinheim, 2004.
[Cp*IrCl2]2 (1.0 mol%)
Ph
Ph
2 (2.0 equiv)
[ReBr(CO)3(thf)]2 (2.5 mol%)
4 Å MS
Ph
H2SO4
AcOH
N
+
OH
toluene, 115 °C, 24 h
1k (2.0 equiv)
5
45%
7
Scheme 5
Synlett 2010, No. 19, 2883–2886 © Thieme Stuttgart · New York