pubs.acs.org/joc
the following: (1) the Knoevenagel condensations of aro-
Palladium-Catalyzed Conjugate Addition to
Electron-Deficient Alkynes with Benzenesulfinic Acid
Derived from 1,2-Bis(phenylsulfonyl)ethane:
Selective Synthesis of (E)-Vinyl Sulfones
matic aldehydes with sulfonylacetic acids,4 (2) Horner-
Emmons reactions of carbonyl compounds and sulfonyl
phosphones,5 (3) β-elimination of selenosulfones or halo-
sulfones,6 and (4) oxidation of the corresponding vinyl
sulfides.7 However, these methods are restricted to relatively
harsh reaction conditions, and inaccessible substrates were
necessary. Recently, a new and efficient route to these com-
pounds is the cross-coupling of sulfinate salts with vinyl
bromides, vinyl triflates, alkenyl boronic acids, or alkenes
with Pd or Cu catalysts (Scheme 1).8 Reeves and co-workers,
for instance, have described a valuable protocol for the
synthesis of vinyl sulfones in moderate to good yields by
palladium-catalyzed coupling of vinyl tosylates with arylsul-
finate salts.8h Here, we report a new approach to (E)-vinyl
sulfones via palladium-catalyzed conjugate additions of
alkynes with 1,2-bis(phenylsulfonyl)ethane (Scheme 1).9 To
the best of our knowledge, it is the first example of using the
commercially available 1,2-bis(phenylsulfonyl)ethane as the
sulfone resource to prepare vinyl sulfones by generating
phenylsulfonyl intermediates in situ for the conjugate addi-
tion to the electron-deficient alkynes.
Ren-Jie Song, Yu Liu, Yan-Yun Liu, and Jin-Heng Li*
Key Laboratory of Chemical Biology & Traditional Chinese
Medicine Research (Ministry of Education), Hunan Normal
University, Changsha 410081, China
Received November 27, 2010
SCHEME 1. Transition Metal-Catalyzed Synthesis of Vinyl
Sulfones
A new, selective method for the synthesis of (E)-vinyl
sulfones is presence by palladium-catalyzed C-S bond
cleavage/conjugate addition. In the presence of Pd-
(OAc)2 and DMEDA (N1,N2-dimethylethane-1,2-diamine),
1,2-bis(phenylsulfonyl)ethane underwent the C-S bond
cleavage, followed by conjugate addition to numerous
electron-deficient alkynes afforded the corresponding
(E)-vinyl sulfones in moderate to good yields.
Vinyl sulfones are unique architectures found in several
biologically active compounds1 as well as usefully syn-
thetic intermediates in organic synthesis.2 For example,
R,β-unsaturated sulfones were reported as inhibitors of inducible
VACM-1 expression.3 Therefore, considerable effort has
been devoted to the development of new and efficient
methods for the synthesis of vinylsulfones. The traditionally
available methodologies for vinyl sulfones mainly include
The reaction between N-benzyl-N,3-diphenylpropiola-
mide (1a) and 1,2-bis(phenylsulfonyl)ethane (2) was investi-
gated to explore the optimal reaction conditions, and the results
are summarized in Table 1. Initially, a number of solvents, such
as dioxane, MeCN, DMF, and DMF/MeCN, were examined
in the presence of Pd(OAc)2, DMEDA (L1), and KOtBu
(4) (a) Balasubramanian, M.; Baliah, V. J. Chem. Soc. 1954, 1844–1847.
(b) Chodroff, S.; Whitmore, W. F. J. Am. Chem. Soc. 1950, 72, 1073–1076.
(c) Happer, D. A. R.; Steenson, B. E. Synthesis 1980, 10, 806–807.
(5) Popoff, I. C.; Denver, J. L. J. Org. Chem. 1969, 34, 1128–1130.
(6) (a) Gancarz, R. A.; Kice, J. L. Tetrahedron Lett. 1980, 21, 4155–4158.
(b) Asscher, M.; Vofsi, D. J. Chem. Soc. 1964, 4962–4971. (c) Asscher, M.;
Vofsi, D. J. Chem. Soc., Perkin Trans. 1 1972, 1543–1545. (d) Hopkins, P. B.;
Fuchs, P. L. J. Org. Chem. 1978, 43, 1208–1217.
(1) (a) Ettari, R.; Nizi, E.; Francesco, M. E. D.; Dude, M.-A.; Pradel, G.;
Vicik, R.; Schirmeister, T.; Micale, N.; Grasso, S.; Zappala, M. J. Med.
Chem. 2008, 51, 988–996. (b) Mahesh, U.; Liu, K.; Panicker, R. C.; Yao,
S.-Q. Chem. Commun. 2007, 1518–1520. (c) Forristal, I. J. Sulfur Chem. 2005,
26, 163–195. (d) Wang, G.; Mahesh, U.; Chen, G. Y. J.; Yao, S.-Q. Org. Lett.
2003, 5, 737–740.
(2) (a) Pandey, G.; Tiwari, K. N.; Puranik, V. G. Org. Lett. 2008, 10,
3611–3614. (b) Oh, K. Org. Lett. 2007, 9, 2973–2975. (c) Desrosiers, J. N.;
Charette, A. B. Angew. Chem., Int. Ed. 2007, 46, 5955–5957. (d) Noshi,
M. N.; El-Awa, A.; Torres, E.; Fuchs, P. L. J. Am. Chem. Soc. 2007, 129,
11242–11247. (e) Mu, L.; Drandarov, K.; Bisson, W. H.; Schibig, A.; Wirz,
C.; Schubiger, P. A.; Westera, G. Eur. J. Med. Chem. 2006, 41, 640–650. (f)
Hof, F.; Schutz, A.; Fah, C.; Meyer, S.; Bur, D.; Liu, J.; Goldberg, D. E.;
Diederich, E. Angew. Chem., Int. Ed. 2006, 45, 138–2141. (g) Wardrop, D. J.;
Fritz, J. Org. Lett. 2006, 8, 3659–3662.
(7) (a) Kirihara, M.; Yamamoto, J.; Noguchi, T.; Hirai, Y. Tetrahedron
Lett. 2009, 50, 1180–1183. (b) Huang, X.; Duan, D.-H.; Zheng, W.-X. J. Org.
Chem. 2003, 68, 1958–1963.
(8) (a) Baskin, J. M.; Wang, Z. Org. Lett. 2002, 4, 4423–4425. (b) Nair, V.;
Augustine, A.; George, T. G.; Nair, L. G. Tetrahedron Lett. 2001, 42, 6763–
6765. (c) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M.; Bernini, R. J.
Org. Chem. 2004, 69, 5608–5614. (d) Zhu, W.; Ma, D.-W. J. Org. Chem. 2005,
70, 2696–2700. (e) Bao, W.; Wang, C. J. Chem. Res. 2006, 6, 396–397. (f)
Huang, F.; Batey, R. A. Tetrahedron. 2007, 63, 7667–7672. (g) Bian, M.; Xu,
F.; Ma, C. Synthesis 2007, 2951–2956. (h) Reeves, D. C.; Rodriguez, S.; Lee,
H.; Hahhad, N.; Krishnamurthy, D.; Senanayake, C. H. Tetrahedron Lett.
2009, 50, 2870–2873.
(3) Ni, L.; Zheng, X. S.; Somers, P. K.; Hoong, L. K.; Hill, R. R.; Marino,
E. M.; Suen, K.-L.; Saxena, U.; Meng, C. Q. Bioorg. Med. Chem. Lett. 2003,
13, 745–748.
DOI: 10.1021/jo102359n
r
Published on Web 01/10/2011
J. Org. Chem. 2011, 76, 1001–1004 1001
2011 American Chemical Society