Wang et al.
JOCNote
SCHEME 1. Synthesis of o-gem-Dibromovinyl Substrates
TABLE 1. Optimization of the C-N Bond Formation Reaction
Conditionsa
for its sustainable and environmentally benign features.9
However, there were only limited examples of reactions in
which direct arylations were coupled with another process.10
Therefore, the combination of Cu-catalyzed coupling reactions
with direct arylation to obtain structurally complex hetero-
cyclic compounds is of significance.
o-gem-Dihalovinylanilines11 have been recently developed
for the synthesis of various 2-substituted indole derivatives
via domino processes.12-14 Our group has also reported a
one-pot method to synthesize pyrimido[1,6-a]indol-1(2H)-
one derivatives through a nucleophilic addition/Cu-catalyzed
N-arylation/Pd-catalyzed C-H activation sequential pro-
cess, in which the reactive ortho position of anilines under-
went direct arylations.15
The C-2 position of indoles is also of high reactivity, on
which direct arylations may easily be conducted.16 Thus, we
envisaged that indoles could also be applicable under our
catalytic system.
aUnless otherwise noted, the reactions were carried out using 1a (0.5
mmol), Cu source (0.05 mmol), ligand (0.1 mmol), and base (1.0 mmol)
in solvent (4.0 mL) under N2, for 12 h. b1,10-Phen = 1,10-phenanthro-
line. cDMEDA = N,N0-dimethylethylenediamine. dn.r. = no reaction.
(9) For recent reviews on direct arylation, see: (a) Dyker, G., Ed.
Handbook of C-H Transformations; Wiley-VCH: Weinheim, 2005; Vols. 1
and 2. (b) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.
(c) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173. (d) Campos,
K. R. Chem. Soc. Rev. 2007, 36, 1069. (e) Li, C.-J. Acc. Chem. Res. 2009, 42,
335. (f) McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev. 2009, 38, 2447.
(10) For selected examples, see: (a) Cuny, G.; Bois-Choussy, M.; Zhu, J.
Angew. Chem., Int. Ed. 2003, 42, 4774. (b) Cuny, G.; Bois-Choussy, M.; Zhu,
J. J. Am. Chem. Soc. 2004, 126, 14475. (c) Bedford, R. B.; Betham, M. J. Org.
Chem. 2006, 71, 9403. (d) Thansandote, P.; Raemy, M.; Rudolph, A.;
Lautens, M. Org. Lett. 2007, 9, 5255. (e) Ackermann, L.; Althammer, A.
Angew. Chem., Int. Ed. 2007, 46, 1627. (f) Watanabe, T.; Ueda, S.; Inuki, S.;
Oishi, S.; Fujii, N.; Ohno, H. Chem. Commun. 2007, 4516. (g) Jensen, T.;
Pedersen, H.; Bang-Andersen, B.; Madsen, R.; Jørgensen, M. Angew. Chem.,
TABLE 2. Optimization of the Second Cyclization: Intramolecular
Direct Arylation Conditionsa
ꢀ
Int. Ed. 2008, 47, 888. (h) Hostyn, S.; Van Baelen, G.; Lemiere, G. L. F.;
Maesa, B. U. W. Adv. Synth. Catal. 2008, 350, 2653. (i) Buden, M. E.;
Vaillard, V. A.; Martin, S. E.; Rossi, R. A. J. Org. Chem. 2009, 74, 4490.
(j) Zhu, B.; Wang, G.-W. Org. Lett. 2009, 11, 4334. (k) Pinto, A.; Neuville, L.;
Zhu, J. Tetrahedron Lett. 2009, 50, 3602.
entry
Pd catalyst
base
yield (%)
ꢁ
1
2
3
4
5
6
7
PdCl2
K2CO3
K2CO3
K2CO3
K2CO3
Cs2CO3
K3PO4
KOAc
55
75
45
trace
60
62
b
Pd(dppf)Cl2
Pd(OAc)2
Pd(dba)2
c
(11) Thiegles, S.; Meddah, E.; Bisseret, P.; Eustache, J. Tetrahedron Lett.
2004, 45, 907.
Pd(dppf)Cl2
Pd(dppf)Cl2
Pd(dppf)Cl2
(12) (a) Fang, Y.-Q.; Lautens, M. Org. Lett. 2005, 7, 3549. (b) Yuen, J.;
Fang, Y.-Q.; Lautens, M. Org. Lett. 2006, 8, 653. (c) Fayol, A.; Fang, Y.-Q.;
Lautens, M. Org. Lett. 2006, 8, 4203. (d) Fang, Y.-Q.; Karisch, R.; Lautens,
M. J. Org. Chem. 2007, 72, 1341. (e) Fang, Y.-Q.; Yuen, Y.; Lautens, M.
J. Org. Chem. 2007, 72, 5152. (f) Nagamochi, M.; Fang, Y.- Q.; Lautens, M.
Org. Lett. 2007, 9, 2955. (g) Fang, Y.-Q.; Lautens, M. J. Org. Chem. 2008, 73,
538. (h) Bryan, C. S.; Lautens, M. Org. Lett. 2008, 10, 4633. (i) Chai, D. I.;
Lautens, M. J. Org. Chem. 2009, 74, 3054. (j) Newman, S. G.; Lautens, M.
J. Am. Chem. Soc. 2010, 132, 11416.
87
aUnless otherwise noted, the reactions were carried out using 2a (0.5
mmol), Pd source (0.05 mmol), and base (1.5 mmol) in solvent (4.0 mL)
b
under N2, at 120 °C for 24 h. dppf = 1,10-bis(diphenyphosphino)-
ferrocene. cdba=1,5-diphenylpenta-1,4-dien-3-one.
(13) Viera, T. O.; Meaney, L. A.; Shi, Y.-L.; Alper, H. Org. Lett. 2008, 10,
4899.
(14) Arthuis, M.; Pontikis, R.; Florent, J.-C. Org. Lett. 2009, 11, 4608.
(15) Wang, Z.-J.; Yang, J.-G.; Yang., F.; Bao, W. Org. Lett. 2010, 12,
3034.
(16) For selected examples of direct arylation on the C-2 position of
indoles, see: (a) Wang, X.; Lane, B. S.; Sames, D. J. Am. Chem. Soc. 2005,
127, 4996. (b) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005,
127, 8050. (c) Bressy, C.; Alberico, D.; Lautens, M. J. Am. Chem. Soc. 2005,
127, 13148. (d) Bremner, J. B.; Sengpracha, W. Tetrahedron 2005, 61, 5489.
(e) Wang, X.; Gribkov, D. V.; Sames, D. J. Org. Chem. 2007, 72, 1476.
(f) Lebrasseur, N.; Larrosa, I. J. Am. Chem. Soc. 2008, 130, 2926. (g) Zhao, J.;
Zhang, Y.; Cheng, K. J. Org. Chem. 2008, 73, 7428. (h) Joucla, L.;
Djakovitch, L. Adv. Synth. Catal. 2009, 351, 673.
Herein, as a part of our continuing effort, we report a
novel and efficient protocol to the synthesis of unsymmet-
rical 1,10-carbonyl-2,20-biindolyls through a Cu-catalyzed
N-arylation/Pd-catalyzed direct arylation sequential process.
Initially, o-gem-dibromovinylphenyl isocyanate and in-
dole were employed as the model substrates. However, the
nucleophilic addition was unsuccessful. So we decided to
change the synthetic route, and o-gem-dibromovinylaniline
and indole-1-carboxylic acid were selected as the starting
materials. Indole-1-carboxylic acid was treated with oxalyl
968 J. Org. Chem. Vol. 76, No. 3, 2011