S. Ozaki et al. / Bioorg. Med. Chem. Lett. 21 (2011) 377–379
379
25. Jeitner, T. M.; Bogdanov, M. B.; Matson, W. R.; Daikhin, Y.; Yudkoff, M.; Folk, J.
E.; Steinman, L.; Browne, S. E.; Beal, M. F.; Blass; John, P.; Cooper, A. J. L. J.
Neurochem. 2001, 79, 1109.
26. Zemaitaitis, M. O.; Lee, J. M.; Troncoso, J. C.; Muma, N. A. J. Neuropathol. Exp.
Neurol. 2000, 59, 983.
27. Kim, S.-Y.; Jeitner, T. M.; Steinert, P. M. Neurochem. Int. 2002, 40, 85.
28. De Young, L.; Ballaron, S.; Epstein, W. J. Invest. Dermatol. 1984, 82, 275.
29. Malorni, W.; Farrace, M. G.; Rodolfo, C.; Piacentini, M. Curr. Pharm. Des. 2008,
14, 278.
30. Azari, P.; Rahim, I.; Clarkson, D. P. Curr. Eye Res. 1981, 1, 463.
31. Schroeder, W. T.; Thacher, S. M.; Stewart-Galetka, S.; Annarella, M.; Chema, D.;
Siciliano, M. J.; Davies, P. J.; Tang, H. Y.; Sowa, B. A.; Duvic, M. J. Invest. Dermatol.
1992, 99, 27.
32. Choi, K.; Siegel, M.; Piper, J. L.; Yuan, L.; Cho, E.; Strnad, P.; Omary, B.; Rich, K.
M.; Khosla, C. Chem. Biol. 2005, 12, 469.
33. Tatsukawa, H.; Fukaya, Y.; Frampton, G.; Martinez-Fuentes, A.; Suzuki, K.; Kuo,
T.-F.; Nagatsuma, K.; Shimokado, K.; Okuno, M.; Wu, J.; Iismaa, S.; Matsuura, T.;
Tsukamoto, H.; Zern, M. A.; Graham, R. M.; Kojima, S. Gastroenterology 2009,
136, 1783.
Hartley reported that a TGase inhibitor (LDDN-80042) blocked
TGase-induced oligomerization of Ab in concentration ranging
from 0.1 to 10 l
M,9 suggesting that TGase might be a therapeutic
target for slowing or blocking the progression of Alzheimer’s dis-
ease. Mastroberardino reported that the knockout of tissue trans-
glutaminase reduced neuronal death and prolonged survival in a
model mouse having Huntington’s disease.20 Karpuj reported pro-
longed survival and decreased abnormal movements in transgenic
models of Huntington’s disease upon administration of cysta-
mine.22 These findings imply that our cystamine-derived TGase
inhibitors may be more potent therapeutic drug candidates against
Huntington’s disease. In addition, the disulfide bond of compounds
will be reduced to sulfide in vivo because of the high GSH/GSSG ra-
tio. Thus, observing the effects of the drug produced using cysta-
mine-derived TGase inhibitors in living cells will be an important
step in future.
34. Lorand, L.; Rule, N. G.; Ong, H. H.; Furlanetto, R.; Jacobsen, A.; Downey, J.; Oner,
N.; Bruner-Lorand, J. Biochemistry 1968, 7, 1214.
35. Stenberg, P.; Nilsson, J. L.; Eriksson, O.; Lunden, R. Acta Pharm. Suec. 1971, 8,
415.
36. Fesus, L. Surv. Immunol. Res. 1982, 1, 297.
37. Piper, J. L.; Gray, G. M.; Khosla, C. Biochemistry 2002, 41, 386.
38. Hovhannisyan, Z.; Weiss, A.; Martin, A.; Wiesner, M.; Tollefsen, S.; Yoshida, K.;
Ciszewski, C.; Curran, S. A.; Murray, J. A.; David, C. S.; Sollid, L. M.; Koning, F.;
Teyton, L.; Jabri, B. Nature 2008, 456, 534.
39. Qiao, S. W.; Piper, J.; Haraldsen, G.; Oynebraten, I.; Fleckenstein, B.; Molberg,
O.; Khosla, C.; Sollid, L. M. J. Immunol. 2005, 174, 1657.
The dithio b-aminoethyl ketones described in this article are
easy to synthesize from disulfide compounds already known to in-
hibit TGase. These ketones, which have IC50 values of approxi-
mately 0.1 lM, exhibit TGase inhibitory activities that are 300
times more potent than the starting disulfide compounds. Hence,
they may be drug candidates for diseases caused by abnormal pro-
tein cross-links, such as cataract, Alzheimer’s, Huntington’s, Par-
kinson’s, celiac, and skin diseases.
40. Pinkas, D. M.; Strop, P.; Brunger, A. T.; Khosla, C. PLoS Biol. 2007, 5, 327.
41. Sollid, L. M. Annu. Rev. Immunol. 2000, 18, 53.
42. Sollid, L. M. Nat. Rev. Immunol. 2002, 2, 647.
References and notes
43. Duval, E.; Case, A.; Stein, R. L.; Cuny, G. D. Bioorg. Med. Chem. Lett. 2005, 15, 1885.
44. Griffin, M.; Mongeot, A.; Collighan, R.; Saint, R. E.; Jones, R. A.; Coutts, I. G. C.;
Rathbone, D. L. Bioorg. Med. Chem. Lett. 2008, 18, 5559.
1. Griffin, M.; Casadio, R.; Bergamini, C. M. Biochem. J. 2002, 368, 377.
2. Lorand, L.; Graham, R. M. Nat. Rev. Mol. Cell Biol. 2003, 4, 140.
3. Cooper, A. J. L.; Jeitner, T. M.; Gentile, V.; Blass, J. P. Neurochem. Int. 2002, 40, 53.
4. Jeitner, T. M.; Pinto, J. T.; Krasnikov, B. F.; Horswill, M.; Cooper, A. J. L. J.
Neurochem. 2009, 109, 160.
5. Liu, S.; Cerione, R. A.; Clardy, J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 2743.
6. Lorand, L. Nature 1951, 167, 992.
7. Clarke, D. D.; Mycek, M. J.; Neidle, A.; Waelsch, H. Arch. Biochem. Biophys. 1959,
79, 338.
8. Candi, E.; Schmidt, R.; Melino, G. Nat. Rev. Mol. Cell Biol. 2005, 6, 328.
9. Hartley, D. M.; Zhao, C.; Speier, A. C.; Woodard, G. A.; Li, S.; Li, Z.; Walz, T. J. Biol.
Chem. 2008, 283, 16790.
10. Norlund, M. A.; Lee, J. M.; Zainelli, G. M.; Muma, N. A. Brain Res. 1999, 851, 154.
11. Grierson, A. J.; Johnson, G. V. W.; Miller, C. C. J. Neurosci. Lett. 2001, 298, 9.
12. Selkoe, D. J.; Abraham, C.; Ihara, Y. Proc. Natl Acad. Sci. U.S.A. 1982, 79, 6070.
13. Ho, G. J.; Gregory, E. J.; Smirnova, I. V.; Zoubine, M. N.; Festoff, B. W. FEBS Lett.
1994, 349, 151.
14. Citron, B. A.; SantaCruz, K. S.; Davies, P. J.; Festoff, B. W. J. Biol. Chem. 2001, 276,
3295.
15. Sárvári, M.; Fésüs, L.; Nemes, Z. Drug Dev. Res. 2002, 56, 458.
16. Singer, S. M.; Zainelli, G. M.; Norlund, M. A.; Lee, J. M.; Muma, N. A. Neurochem.
Int. 2002, 40, 17.
17. Miller, M. L.; Johnson, G. V. J. Neurochem. 1995, 65, 1760.
18. Johnson, G. V.; Cox, T. M.; Lockhart, J. P.; Zinnerman, M. D.; Miller, M. L.;
Powers, R. E. Brain Res. 1997, 751, 323.
19. Kim, S. Y.; Grant, P.; Lee, J. H.; Pant, H. C.; Steinert, P. M. J. Biol. Chem. 1999, 274,
30715.
20. Mastroberardino, P. G.; Iannicola, C.; Nardacci, R.; Bernassola, F.; De Laurenzi,
V.; Melino, G.; Moreno, S.; Pavone, F.; Oliverio, S.; Fesus, L.; Piacentini, M. Cell
Death Differ. 2002, 9, 873.
21. Jeitner, T. M.; Matson, W. R.; Folk, J. E.; Blass, J. P.; Cooper, A. J. L. J. Neurochem.
2008, 106, 37.
22. Karpuj, M. V.; Becher, M. W.; Springer, J. E.; Chabas, D.; Youssef, S.; Pedotti, R.;
Mitchell, D.; Steinman, L. Nat. Med. 2002, 8, 143.
23. Dedeoglu, A.; Kubilus, J. K.; Jeitner, T. M.; Matson, S. A.; Bogdanov, M.; Kowall,
N. W.; Matson, W. R.; Cooper, A. J. L.; Ratan, R. R.; Beal, M. F.; Hersch, S. M.;
Ferrante, R. J. J. Neurosci. 2002, 22, 8942.
45. Watts, R. E.; Siegel, M.; Khosla, C. J. Med. Chem. 2006, 49, 7493.
46. Pardin, C.; Pelletier, J. N.; Lubell, W. D.; Keillor, J. W. J.Org. Chem. 2008, 73, 5766.
47. Lai, T.-S.; Liu, Y.; Tucker, T.; Daniel, K. R.; Sane, D. C.; Toone, E.; Burke, J. R.;
Strittmatter, W. J.; Greenberg, C. S. Chem. Biol. 2008, 15, 969.
48. Hausch, F.; Halttunen, T.; Mäki, M.; Khosla, C. Chem. Biol. 2003, 10, 225.
49. Kim, S. Y.; Jeong, K. C. PCT Int. Appl. WO 2008153319 A1, 2008.
50. Kim, S. Y.; Jeong, K. C. PCT Int. Appl. WO 2008153318 A2, 2008.
51. Kim, S.-Y.; Kim, T.-I.; Sohn, J.-H. PCT Int. Appl. WO 2009045054 A2, 2009.
52. Oertel, K. PCT Int. Appl. WO 2008055488 A1, 2008.
53. Kim, S. Y. PCT Int. Appl. WO 2007026996 A1, 2007.
54. De, J. G. A. H.; Boumans, J. W. L.; Wijngaards, G. Eur. Pat. Appl. EP 1201136 A1,
2002.
55. Kim, S. Y.; Lee, C. H.; Jeong, K. C.; Lee, B. I. PCT Int. Appl. WO 2010011117 A2, 2010.
56. Hsu, T. C.; Huang, C. Y.; Chiang, S. Y.; Lai, W. X.; Tsai, C. H.; Tzang, B. S. Eur. J.
Pharmacol. 2008, 579, 382.
57. Kim, S. Y.; Kim, I. H.; Park, S. S. PCT Int. Appl. WO 2007069817A1, 2007.
58. Khosla, C.; Watts, R. E.; Siegel, M. J.; Pinkas, D. M.; Choi, K.; Rich, K. M. U.S. Pat.
Appl. Publ. US 2006052308 A1, 2006.
59. Ozaki, S.; Ebisui, E.; Hamada, K.; Goto, J.; Suzuki, A. Z.; Terauchi, A.; Mikoshiba,
K. Bioorg. Med. Chem. Lett. 2010, 20, 1141.
60. Connellan, J. M.; Folk, J. E. J. Biol. Chem. 1969, 244, 3173.
61. Chung, S. I.; Folk, J. E. J. Biol. Chem. 1970, 245, 681.
62. McDonnell, N. B.; De Guzman, R. N.; Rice, W. G.; Turpin, J. A.; Summers, M. F. J.
Med. Chem. 1997, 40, 1969.
63. Okauchi, M.; Xi, G.; Keep, R. F.; Hua, Y. Brain Res. 2009, 1249, 229.
64. Qiu, L.; Zhang, M.; Sturm, R. A.; Gardiner, B.; Tonks, I.; Kay, G.; Parsons, P. G. J.
Invest. Dermatol. 2000, 114, 21.
65. Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed. 1998, 37, 1044.
66. Brown, G. R.; Bamford, A. M.; Bowyer, J.; James, D. S.; Rankine, N.; Tang, E.; Torr,
V.; Culbert, E. J. Bioorg. Med. Chem. Lett. 2000, 10, 575.
67. Flynn, G. A.; Lee, S. A.; Faris, M.; Brandt, D. W.; Chakravarty, S. PCT Int. Appl.
WO 2007136790 A2, 2007.
68. Spectroscopic data for N,N-bis(2-(5-bromo-2-thiophenoyl)ethyl)cystine
methyl ester 1: 1H NMR (270 MHz, CDCl3) d 7.44 (m, 2H), 7.11 (m, 2H), 3.83
(m, 2H), 3.70 (s, 6H), 3.34 (m, 4H), 2.88 (m, 4H), 2.51 (m, 4H); 13C NMR
(67.5 MHz, CDCl3) d 189.3, 163.9, 146.2, 132.4, 131.2, 122.7, 67.0, 53.4, 41.5,
38.5, 34.9. HRMS (FAB) (m/z): calcd for C22H27Br2N2O6S4 [M+H+] 700.9119,
þ
24. Junn, E.; Ronchetti, R. D.; Quezado, M. M.; Kim, S.-Y.; Mouradian, M. M. Proc.
Natl Acad. Sci. U.S.A. 2003, 100, 2047.
found 700.9156.