1060 Organometallics, Vol. 30, No. 5, 2011
Lentijo et al.
(the organoplatinum derivatives kept 70-80% of the fluores-
cence of the mother organic molecule), in spite of the fact that
attaching directly metal centers to aromatic cores of organic
chromospheres is usually very detrimental for fluores-
cence.21,22 Only two Pd complexes have been reported, by the
Rybtchinski group, obtained by oxidative addition to Pd(0).
These contain Pd directly attached to the 1,7 aromatic posi-
tions of a perylene diimide.23 The cyclopalladation reaction
should offer a good opportunity to extend this family of
derivatives.1 Thus, exploring the functionalization of perylene
by cyclometalation looks interesting. Although luminiscent
cyclopalladated complexes are rare and, with very few
exceptions,24 emit only at low temperatures and with low
efficiency,25 the area has not yet been sufficiently explored.
The presence of the metal and their ancillary ligands in the
perylene system should, additionally, offer an easy way to
modify the optoelectronic properties of the material and could
offer an efficient tool to create new structural and functional
motifs, significantly widening the diversity of photofunctional
systems available.
(3) (a) Albert, J.; Bosque, R.; Granell, J.; Tavera, R. J. Organomet.
Chem. 2000, 595, 54. (b) Zhou, J.; Wang, Q.; Sun, H. Acta Crystallogr.,
Sect. E: Struct. Rep. Online 2008, 64, m688. (c) Kind, L.; Klaus, A. J.; Rys,
P.; Gramlich, V. Helv. Chim. Acta 1998, 81, 307. (d) Bhawmick, R.; Das, P.;
Neogi, D.; Bandyopahyay, P. Polyhedrom 2006, 25, 1177. (e) Gehrig, K.;
Hugentobler, M.; Klaus, A. J.; Rys, P. Inorg. Chem. 1982, 21, 2493. (f) Li, Y.;
Ng, K. H.; Selvaratnam, S.; Tan, G. K.; Vittal, J. J.; Leung, P. H. Organo-
metallics 2003, 22, 834. (g) Doro, F.; Lutz, M.; Reek, J. N. H.; Spek, A. L.;
van Leeuwen, P. W. N. M. Eur. J. Inorg. Chem. 2008, 1309. (h) Neogi, D. N.;
Das, P.; Biswas, A. N.; Bandyopadhyay, P. Polyhedron 2006, 25, 2149. (i)
Neogi, D. N.; Biswas, A. N.; Das, P.; Bhawmick, R.; Bandyopadhyay, P.
Inorg. Chim. Acta 2007, 360, 2181. (j) Pfeffer, M.; Sutter-Beydoun, N.; De
Cian, A.; Fischer, J. J. Organomet. Chem. 1993, 453, 139. (k) Albert, J.;
Bosque, R.; Cadena, J. M.; Delgado, S.; Granell, J. J. Organomet. Chem.
2001, 634, 83. (l) Li, Y.; Khim-Hui Ng, K.-H.; Selvaratnam, S.; Tan, G.-K.;
Vittal, J. J.; Leung, P.-H. Organometallics 2003, 22, 834. (m) O'Keefe, B. J.;
Steel, P. J. Organometallics 2003, 22, 1281.
(4) Feiler, L.; Langhals, H.; Polborn, K. Liebigs Ann. 1995, 1229.
€
(5) (a) Wurthner, F. Chem. Commun. 2004, 1564. (b) Wasielewski,
M. R. J. Org. Chem. 2006, 71, 5051.
€
(6) (a) Mullen, K.; Quante, H.; Benfaremo, N. Polymeric Materials
Results and Discussion
Encyclopedia; Salamone, J. C., Ed.; CRC Press: Boca Raton, FL, 1996; p
4999. (b) Quante, H.; Geerts, Y.; M€ullen, K. Chem. Mater. 1997, 9, 495.
(7) (a) Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons,
E.; Friend, R. H.; Mackenzie, J. D. Science 2001, 293, 1119. (b) Zhan, X.;
Tan, Z.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.;
Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7246. (c) Breeze,
A. J.; Salomon, A.; Ginley, D. S.; Gregg, B. A.; Tilmann, H.; Horhold, H.
Appl. Phys. Lett. 2002, 81, 3085.
(8) Loutfy, H. O.; Hor, A. M.; Kazmaier, P.; Tam, M. J. Imaging Sci.
A general problem in the study of perylene derivatives is the
poor solubility of the compounds. To circumvent this problem,
we devised imine (2), with an ethyl group in the anilinic part,
accessible from perylene through perylene-3-carbaldehyde (1).
This ethyl group and the ancillary ligands in the metalated
compounds should enhance the solubility of the compounds.
From imine 2 a five-membered ring with the metal σ-bonded
totheperylenecoreinanortho-(C2) position, or a six-membered
ring with the metal bonded to the peri-(C4) position, can be
expected depending on the metalation position (Figure 1), as
found in structurally similar naphthyl, phenanthryl, and an-
thracenyl derivatives.3 Five-membered chelate ring formation
is generally favored over six-membered rings, but this seems a
rather loose rule.1
€
€
€
1989, 33, 151.
(9) (a) O’Neil, M. P.; Niemczyk, M. P.; Svec, W. A.; Gosztola, D.;
Gaines, G. L.; Wasielewski, M. R. Science 1992, 257, 63. (b) Yoo, B.;
Jung, T.; Basu, D.; Dodabalapur, A.; Jones, B. A.; Facchetti, A.; Wasielewski,
M. R.; Marks, T. J. Appl. Phys. Lett. 2006, 88, 082104/1. (c) Jones, B. A.;
Ahrens, M. J.; Yoon, M. H.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R.
Angew. Chem., Int. Ed. 2004, 43, 6363.
(10) (a) Sauter, A.; Kaletas, B. K.; Schmid, D. G.; Dobrawa, R.;
Zimine, M.; Jung, G.; Van Stokkum, I. H. M.; De Cola, L.; Williams,
€
R. M.; Wurthner, F. J. Am. Chem. Soc. 2005, 127, 6719. (b) Sugiyasu, K.;
Fukita, N.; Shinkai, S. Angew. Chem., Int. Ed. 2004, 43, 1229.
(11) (a) Gvishi, R.; Reisfeld, R.; Z. Bursheim, R. Chem. Phys. Lett.
1993, 213, 338. (b) Harriman, A.; Izzet, G.; Ziessel, R. J. Am. Chem. Soc.
2006, 128, 10868. (c) Yang, Y.; Lin, H.; Xu, H.; Wang, M.; Qian, G. Opt.
Commun. 2008, 281, 5218.
(12) (a) Seybold, G.; Wangenblast, G. Dyes Pigm. 1989, 11, 303. (b)
Alamiry, M. A. H.; Harriman, A.; Mallon, L. J.; Ulrich, G.; Ziesse, R. Eur. J.
Org. Chem. 2008, 2774.
Synthesis of the Compounds. The conversion of perylene to
imine was achieved in two steps. The starting perylene was
formylated in the 3 position,26 and the perylene-3-carbalde-
hyde (1) was condensed with 4-ethylaniline, in toluene at room
(13) Langhls, H. Hetorocycles 1995, 40, 477.
(14) Burghard, M.; Fischer, C.; Schmelzer, M.; Roth, S.; Hanack, M.;
(19) (a) Porter, L. C.; Polam, J. R.; Bodige, S. Inorg. Chem. 1995, 34,
998. (b) Shibasaki, T.; Komine, N.; Hirano, M.; Komiya, S. J. Organomet.
Chem. 2007, 692, 2385. (c) Arrais, A.; Diana, E.; Gervasio, G.; Gobetto, R.;
Marabello, D.; Stanghellini, P. L. Eur. J. Inorg. Chem. 2004, 1505. (d)
Murahashi, T.; Uemura, T.; Kurosawa, H. J. Am. Chem. Soc. 2003, 125,
8436. (e) Murahashi, T.; Kato, N.; Uemura, T.; Kurosawa, H. Angew. Chem.,
Int. Ed. 2007, 46, 3509.
€
Gopel, W. Chem. Mater. 1995, 7, 2104.
€
(15) Rohr, U.; Kohl, C.; Mullen, K.; van de Craats, A.; Warman, J.
J. Mater. Chem. 2001, 11, 1789.
(16) (a) Nakaya, K.; Funabiki, K.; Shibata, K.; Matsui, M. Bull.
ꢀ
Chem. Soc. Jpn. 2001, 74, 549. (b) Xie, J.; Menand, M.; Maisonneuve, S.;
Metivier, R. J. Org. Chem. 2007, 72, 5980.
(17) Kaiser, T. E.; Stepanenko, V.; Wurtner, F. J. Am. Chem. Soc.
2009, 131, 6719.
(20) Lentijo, S.; Miguel, J. A.; Espinet, P. Inorg. Chem. 2010, 49, 9169.
(21) Yersin, H.; Strasser, J. Coord. Chem. Rev. 2000, 208, 331.
(22) Chandra, A. K.; Turro, N. J.; Lyons, A. L., Jr.; Stone, P. J. Am.
Chem. Soc. 1978, 100, 4964.
€
(18) (a) Rachford, A. A.; Goeb, S.; Castellano, F. J. Am. Chem. Soc.
2008, 130, 2766. (b) Rachford, A. A.; Goeb, S.; Ziessel, R.; Castellano, F.
Inorg. Chem. 2008, 47, 4348. (c) Zhu, W.; Fan, L. Dyes Pigm. 2008, 76, 663.
(d) Qvortrup, K.; Bond, A. D.; Nielsen, A.; Mckenzie, C. J.; Kilsa, K.;
Nielsen, M. B. Chem. Commun. 2008, 1986. (e) Vilaca, G.; Barathieu, K.;
Jousseaume, B.; Toupance, T.; Allouchi, H. Organometallics 2003, 22, 4584.
(f) Cuffe, L.; Hudson, R. D. A.; Gallaguer, J. F.; Jennings, S.; McAdam, C. J.;
Connelly, R. B. T.; Manning, A. R.; Robinson, B. H.; Simpson, J. Organo-
metallics 2005, 24, 2051. (g) Suenaga, Y.; Kuroda-Sowa, T.; Munakata, M.;
Maekawa, M. Polyhedrom 1998, 17, 2207. (h) Qvortrup, K.; Bond, A. D.;
Nielsen, A.; McKenzie, C. J.; Kilsa, K; Nielsen, M. B. Chem. Commun.
2008, 1986. (i) W€urthner, F.; Sautter, A.; Schmid, D.; Weber, P. J. A. Chem.;
Eur. J. 2001, 7, 894. (j) You, C. C.; Hippius, C.; Gru€ne, M.; W€urthner, F.
Chem.;Eur. J. 2006, 12, 7510. (k) Rodríguez-Morgade, M. S.; Torres, T.;
Atienza-Castellanos, C.; Guldi, D. M. J. Am. Chem. Soc. 2006, 128, 15145.
(23) Weissman, H.; Shirman, E.; Ben-Moshe, T.; Cohen, R.; Leitus,
G.; Shimon, L. J. W.; Rybtchinski, B. Inorg. Chem. 2007, 46, 4790.
(24) (a) LaDeda, M.; Ghedini, M.; Aiello, I.; Pugliese, T.; Barigelletti,
F.; Accorsi, G. J. Organomet. Chem. 2005, 690, 857. (b) Neve, F.; Crispini,
A.; Campagna, S. Inorg. Chem. 1997, 36, 6150. (c) Schwarz, R.; Gliemann,
G.; Jolliet, P.; von Zelewsky, A. Inorg. Chem. 1989, 28, 742.
ꢀ
(25) (a) Dıez, A.; Fornies, J.; Fuertes, S.; Lalinde, E.; Larraz, C.;
ꢀ
Lopez, J. A.; Martın, A.; Moreno, M. T.; Sicilia, V. Organometallics
2009, 28, 1705. (b) Neve, F.; Crispini, A.; Di Pietro, C.; Campagna, S.
Organometallics 2002, 21, 3511. (c) Song, D.; Wu, Q.; Hook, A.; Kozin, I.;
Wang, S. Organometallics 2001, 20, 4683. (d) Wu, Q.; Hook, A.; Wang, S.
Angew. Chem., Int. Ed. 2000, 39, 3933. (e) Lai, S. W.; Cheung, T. C.; Chan,
M. C. W.; Cheung, K. K.; Peng, S. M.; Che, C. M. Inorg. Chem. 2000, 39,
255. (f) Maestri, M.; Sandrini, D.; Balzani, V. Helv. Chim. Acta 1988, 71,
134. (g) Maestri, M.; Sandrini, D.; Balzani, V.; von Zelewsky, A.; Deuschel-
Cornioley, C.; Jolliet, P. Helv. Chim. Acta 1988, 71, 1053. (h) Puzyk, M. V.;
Antonov, N. V.; Ivanov, Y. A.; Balashev, K. P. Opt. Spectrosc. 1999, 87, 277.
(26) Qiu, H.; Wang, C.; Xu, J.; Lai, G.; Shen, Y. Monatsh. Chem.
2008, 93, 88.
ꢀ
€
(l) Jimenez, A. J.; Spanig, F.; Rodríguez-Morgade, M. S.; Ohkubo, K.;
Fukuzumi, S.; Guldi, D. M.; Torres, T. Org. Lett. 2007, 9, 2481. (m)
Goretzki, G.; Davies, E. D.; Argent, S. P.; Warren, J. E.; Blake, A. J.;
Champness, N. R. Inorg. Chem. 2009, 48, 10264. (n) Gebers, J.; Rolland, D.;
Frauenrath, H. Angew. Chem., Int. Ed. 2009, 48, 4480.