Organic Letters
Letter
́
1780. (o) Phapale, V. B.; Cardenas, D. J. Nickel-catalysed Negishi
cross-coupling reactions: scope and mechanisms. Chem. Soc. Rev.
2009, 38, 1598.
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, U.K.; fax: +44 1223 336033.
(2) For examples of Ni-catalyzed carboiodination, see: (a) Marchese,
A. D.; Lind, F.; Mahon, A.; Yoon, H.; Lautens, M. Forming Benzylic
AUTHOR INFORMATION
■
́
Corresponding Author
ORCID
Iodides via a Nickel Catalyzed Diastereoselective Dearomative
Carboiodination Reaction of Indoles. Angew. Chem., Int. Ed. 2019,
58, 5095. (b) Takahashi, T.; Kuroda, D.; Kuwano, T.; Yoshida, Y.;
Kurahashi, T.; Matsubara, S. Nickel-catalyzed intermolecular
carboiodination of alkynes with aryl iodides. Chem. Commun. 2018,
54, 12750. (c) Yoon, H.; Marchese, A. D.; Lautens, M.
Carboiodination Catalyzed by Nickel. J. Am. Chem. Soc. 2018, 140,
10950.
Notes
The authors declare no competing financial interest.
(3) For examples of Pd-catalyzed carboiodination, see: (a) Zhang,
Z.-M.; Xu, B.; Wu, L.; Zhou, L.; Ji, D.; Liu, Y.; Li, Z.; Zhang, J.
Palladium/XuPhos-Catalyzed Enantioselective Carboiodination of
Olefin-Tethered Aryl Iodides. J. Am. Chem. Soc. 2019, 141, 8110.
(b) Lee, Y. H.; Morandi, B. Palladium-Catalyzed Intermolecular
Aryliodination of Internal Alkynes. Angew. Chem., Int. Ed. 2019, 58,
6444. (c) Sun, Y.-L.; Wang, X.-B.; Sun, F.-N.; Chen, Q.-Q.; Cao, J.;
Xu, Z.; Xu, L.-W. Enantioselective Cross-Exchange between C−I and
C−C σ-Bonds. Angew. Chem., Int. Ed. 2019, 58, 6747. (d) Hou, L.;
Zhou, Z. Z.; Wang, D.; Zhang, Y.; Chen, X.; Zhou, L.; Hong, Y.; Liu,
W.; Hou, Y.; Tong, X. DPPF-Catalyzed Atom-Transfer Radical
Cyclization via Allylic Radical. Org. Lett. 2017, 19, 6328. (e) Petrone,
D. A.; Yoon, H.; Weinstabl, H.; Lautens, M. Additive effects in the
palladium-catalyzed carboiodination of chiral N-allyl carboxamides.
Angew. Chem., Int. Ed. 2014, 53, 7908. (f) Petrone, D. A.; Lischka, M.;
Lautens, M. Harnessing Reversible Oxidative Addition: Application of
Diiodinated Aromatic Compounds in the Carboiodination Process.
Angew. Chem., Int. Ed. 2013, 52, 10635. (g) Jia, X.; Petrone, D. A.;
Lautens, M. A conjunctive carboiodination: indenes by a double
carbopalladation-reductive elimination domino process. Angew.
Chem., Int. Ed. 2012, 51, 9870. (h) Petrone, D. A.; Malik, H. A.;
Clemenceau, A.; Lautens, M. Functionalized Chromans and Isochro-
mans via a Diastereoselective Pd (0)-Catalyzed Carboiodination. Org.
Lett. 2012, 14, 4806. (i) Newman, S. G.; Lautens, M. Palladium-
catalyzed carboiodination of alkenes: carbon-carbon bond formation
with retention of reactive functionality. J. Am. Chem. Soc. 2011, 133,
1778. (j) Liu, H.; Li, C.; Qiu, D.; Tong, X. Palladium-Catalyzed
Cycloisomerizations of (Z)-1-Iodo-1,6-dienes: Iodine Atom Transfer
and Mechanistic Insight to Alkyl Iodide Reductive Elimination. J. Am.
Chem. Soc. 2011, 133, 6187. (k) Newman, S. G.; Howell, J. K.;
Nicolaus, N.; Lautens, M. Palladium-catalyzed carbohalogenation:
bromide to iodide exchange and domino processes. J. Am. Chem. Soc.
2011, 133, 14916. (l) Liu, H.; Chen, C.; Wang, L.; Tong, X. Pd(0)-
Catalyzed Iodoalkynation of Norbornene Scaffolds: The Remarkable
Solvent Effect on Reaction Pathway. Org. Lett. 2011, 13, 5072.
(4) Chen, L.; Feng, L.; He, Y.; Huang, M.; Liu, M.; Zhou, M. Novel
Tetrahydroquinoline Derivatives. WO 2012/001020 A1, Jan 5, 2012.
(5) Aguilar, N.; Fernandez, J. C.; Terricabras, E.; Carceller Gonzalez,
E.; Salas Solana, J. Substituted Tricyclic Compounds with Activity
towards EP1 Receptors. WO 2013/149997 A1, Oct 10, 2013.
(6) Other phosphites examined included P(OPh)3, P(OtBu)3, and
tris(2-ethylhexyl)phosphite, but little to no conversion was observed.
Additionally, combinations of P(OiPr)3 and these aforementioned
ligands were tried but were again unsuccessful. Di-tert-butyl-N,N-
diethyl phosphoramidite was also employed but failed in the reaction.
(7) Triphenylphosphine and ethoxydiphenylphosphine in the
presence of Mn (0.6 equiv) were employed but failed to show any
reactivity.
ACKNOWLEDGMENTS
■
We thank the University of Toronto, the Natural Science and
Engineering Research Council (NSERC), Alphora Research
Inc., and Kennarshore Inc. for financial support. A.D.M. thanks
OGS and NSERC for an NSERC Vanier Fellowship. We thank
Alan Lough (University of Toronto) for X-ray analysis of 2b
and 2l, Dr. Darcy Burns and Dr. Jack Sheng (University of
Toronto) for their assistance with NMR experiments, and Dr.
Hyung Yoon and Dr. Dave Petrone for the synthesis of
substrates 1b and 1d−i.
REFERENCES
■
(1) For work outlining metal-catalyzed C−X bond formation, see:
(a) Garrison Kinney, R.; Tjutrins, J.; Torres, G. M.; Liu, N. J.;
Kulkarni; Arndtsen, B. A. A General Approach, to Intermolecular
Carbonylation of Arene C-H Bonds to Ketones Through Catalytic
Aroyl Triflate Formation. Nat. Chem. 2018, 10, 193. (b) Shen, Y.;
Cornella, J.; Julia-Hernandez, F.; Martin, R. Visible Light-Promoted
Atom Transfer Radical Cyclization of Unactivated Alkyl Iodides. ACS
Catal. 2017, 7 (1), 409. (c) Petrone, D. A.; Ye, J.; Lautens, M.
Modern Transition-Metal-Catalyzed Carbon-Halogen Bond Forma-
tion. Chem. Rev. 2016, 116, 8003. (d) Roy, A. H.; Hartwig, J. F.
Reductive Elimination of Aryl Halides upon Addition of Hindered
Alkylphosphines to Dimeric Arylpalladium(II) Halide Complexes.
Organometallics 2004, 23, 1533. For work related to Ni-catalyzed
cross-coupling reactions, see: (e) Clark, J. S. K.; Ferguson, M. J.;
McDonald, R.; Stradiotto, M. PAd2-DalPhos Enables the Nickel-
Catalyzed C−N Cross-Coupling of Primary Heteroarylamines and
(Hetero)aryl Chlorides. Angew. Chem., Int. Ed. 2019, 58, 6391.
̈
(f) Sun, S.-Z.; Borjesson, M.; Martin-Montero, R.; Martin, R. Site-
Selective Ni-Catalyzed Reductive Coupling of α-Haloboranes with
Unactivated Olefins. J. Am. Chem. Soc. 2018, 140, 12765. (g) Yu, P.;
Morandi, B. Nickel Catalyzed Cyanation of Aryl Chlorides and
Triflates Using Butyronitrile: Merging Retro-Hydrocyanation with
Cross Coupling. Angew. Chem., Int. Ed. 2017, 56, 15693. (h) Schley,
N.; Fu, G. C. Nickel-Catalyzed Negishi Arylations of Propargylic
Bromides: A Mechanistic Investigation. J. Am. Chem. Soc. 2014, 136,
16588. (i) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Recent
advances in homogeneous nickel catalysis. Nature 2014, 509, 299.
(j) Cherney, A. H.; Reisman, S. E. Nickel-catalyzed asymmetric
reductive cross-coupling between vinyl and benzyl electrophiles. J.
Am. Chem. Soc. 2014, 136, 14365. (k) Han, F. − S. Transition-metal-
catalyzed Suzuki−Miyaura cross-coupling reactions: a remarkable
advance from palladium to nickel catalysts. Chem. Soc. Rev. 2013, 42,
5270. (l) Davis, J. L.; Arndtsen, B. A. Comparison of Imine to Olefin
Insertion Reactions: Generation of Five- and Six-Membered Lactams
via a Nickel-Mediated CO, Olefin, CO, Imine Insertion Cascade.
Organometallics 2011, 30, 1896. (m) Watson, M. P.; Jacobsen, E. N.
Arylcyanation of Unactivated Olefins via C-CN Bond Activation. J.
Am. Chem. Soc. 2008, 130, 12594. For mechanistic insight on Ni-
catalyzed cross-couplings, see: (n) Liu, C.; Zhang, H.; Shi, W.; Lei, A.
Bond Formations between Two Nucleophiles: Transition Metal
Catalyzed Oxidative Cross-Coupling Reactions. Chem. Rev. 2011, 111,
(8) A concentration of 0.1 M was chosen, as many of the substrates
were saplike liquids and it was necessary to have enough solvent to
dissolve them. Adding an amine such as triethylamine did not
improve the d.r. of the reaction, as shown in the palladium
methodology.
(9) The best conditions achieved with Pd afforded product 2l in
79% NMR yield, with >90:10 d.r. The conditions used were
E
Org. Lett. XXXX, XXX, XXX−XXX