Article
Organometallics, Vol. 30, No. 4, 2011 793
Scheme 1. Simplified Reaction Scheme of the Dow Process
Scheme 2. Telomerization of 1,3-Butadiene with Methanol To Produce 1-Methoxy-2,7-octadiene (1-MOD)
however, could not be achieved under the Dow production
conditions using the industrial feed.8
among the diphosphines is 2,20-bis(1,4-cyclooctylenephos-
phinomethyl)-1,10-biphenyl, which gave high selectivity to
the linear telomer (up to 94% at 70 °C).12
Diphosphines were reported as ligands for the telomeriza-
tion of dienes with amines, water,9,10 and alcohols,7f,g,11 but
often diphosphine catalysts performed worse than mono-
phosphine catalysts in terms of productivity and selectivity,
especially when an alkyl spacer was used. An exception
Recently we reported on the successful use of moderately
bulky monophosphines, for instance monoxantphos, for the
telomerization of 1,3-butadiene with methanol to selectively
produce 1-MOD under commercially relevant reaction con-
ditions; the reactions were carried out with crude C4, con-
taining ∼50% of 1,3-butadiene.13 We continued our inves-
tigations using diphosphines having a large P-P distance,
which might invoke bimetallic species or which might act as
two independent monophosphines. Large backbones con-
taining two phosphines acting independently are of interest,
because per weight they are more effective than the mono-
phosphines derived from the same backbone. Second, the
interest for such diphosphines is also related to the expected
costs of the syntheses of the ligands; obviously, using a sym-
metric backbone for the preparation of a diphosphine will be
easier than the (always tricky) monofunctionalization of the
same backbone to prepare the monophosphine.
The use of monodentate arylphosphines containing o-meth-
oxy substituents was reported recently, and these catalysts gave
a higher selectivity to 1-MOD than did PPh3,5a,14 as is also
known for allylic alkylation reactions, for which a stronger
donor trans to C3 gives more linear product.15
With regard to the potential formation of bimetallic spe-
cies, in the rhodium-catalyzed carbonylation of methanol we
found that, unexpectedly, bimetallic complexes gave much
(5) (a) Palkovits, R.; Nieddu, I.; Klein Gebbink, R. J. M.; Weckhuy-
sen, B. M. ChemSusChem 2008, 1, 193–196. (b) Behr, A.; Bahke, P.;
Becker, M. Chem. Ing. Tech. 2004, 76, 1828–1832. (c) Behr, A.; Urschey,
M. Adv. Synth. Catal. 2003, 345, 1242–1246. (d) Behr, A.; Urschey, M. J.
Mol. Catal. A: Chem. 2003, 197, 101–113. (e) Estrine, B.; Soler, R.; Damez,
C.; Bouquillon, S.; Henin, F.; Muzart, J. Green Chem. 2003, 5, 686–689. (f)
Magna, L.; Chauvin, Y.; Niccolai, G. P.; Basset, J. M. Organometallics 2003,
ꢀ
22, 4418–4425. (g) Estrine, B.; Bouquillon, S.; Henin, F.; Muzart, J. Eur. J.
Org. Chem. 2004, 2914–2922. (h) Benvenuti, F.; Carlini, C.; Marchionna,
M.; Patrini, R.; Raspolli Galletti, A. M.; Sbrana, G. J. Mol. Catal. A: Chem.
1999, 140, 139–155. (i) Basato, L.; Crociani, F.; Benvenuti, F.; Raspolli
Galletti, A. M.; Sbrana, G. J. Mol. Catal. A: Chem. 1999, 145, 313–316. (j)
Grenouillet, P.; Neibecker, D.; Poirier, J.; Tkatchenko, I. Angew. Chem.
1982, 94, 796-797; Angew. Chem., Int. Ed. Engl. 1982, 21, 767-768. (k)
Perree-Fauvet, M.; Chauvin, Y. Tetrahedron Lett. 1975, 16, 4559–4562.
(l) Takahashi, S.; Shibano, T.; Hagihara, N. Tetrahedron Lett. 1967, 8,
2451–2453. (m) Smutny, E. J. Ann. N.Y. Acad. Sci. 1973, 214, 125–42. (n)
Smutny, E. J. J. Am. Chem. Soc. 1967, 89, 6793–6794.
(6) (a) Benn, R.; Jolly, P. W.; Mynott, R.; Raspel, B.; Schenker, G.;
Schick, K.-P.; Schroth, G. Organometallics 1985, 4, 1945–1953. (b) Jolly,
P. W.; Mynott, R.; Raspel, B.; Schick, K.-P. Organometallics 1986, 5, 473–
481. (c) Jolly, P. W. Angew. Chem. 1985, 97, 279–291. Angew. Chem., Int.
Ed. Engl. 1985, 24, 283-295. (d) Benn, R.; Jolly, P. W.; Jowig, T.;
Mynott, R.; Schick, K.-P. Z. Naturforsch. 1986, 41b, 680–691. (e) Behr,
A.; Ilsemann, G. V.; Keim, W.; Kr€uger, C.; Tsay, Y.-H. Organometallics
€
1986, 5, 514–518. (f) Doring, A.; Jolly, P. W.; Mynott, R.; Schick, K. P.;
Wilke, G. Z. Naturforsch. 1981, 36b, 1198–1199.
(7) (a) Grotevendt, A.; Bartolome, M.; Nielsen, D. J.; Spannenberg,
A.; Jackstell, R.; Kingsley, C.; Oro, L. A. Tetrahedron Lett. 2007, 48,
9203–9207. (b) Jackstell, R.; Grotevendt, A.; Michalik, D.; El Firdoussi, L.;
Beller, M. J. Organomet. Chem. 2007, 692, 4737–4744. (c) Harkal, S.;
Jackstell, R.; Nierlich, F.; Ortmann, D.; Beller, M. Org. Lett. 2005, 7, 541–
544. (d) Jackstell, R.; Harkal, S.; Jiao, H.; Spannenberg, A.; Borgmann, C.;
Roettger, D.; Nierlich, F.; Elliot, M.; Niven, S.; Kingsley, C.; Navarro, O.;
Viciu, M. S.; Nolan, S. P.; Beller, M. Chem. Eur. J. 2004, 10, 3891–3900. (e)
Jackstell, R.; Frisch, A.; Beller, M.; Rottger, D.; Malaun, M.; Bildstein, B. J.
Mol. Catal. A: Chem. 2002, 185, 105–112. (f) Jackstel, R.; Andreu, G. A.;
Frisch, A.; Selvakumar, K.; Zapf, A.; Klein, H.; Spannenberg, A.; Rottger, D.;
Briel, O.; Karch, R.; Beller, M. Angew. Chem., Int. Ed. 2002, 41, 986–989. .
(12) Drent, E.; Eberhard, M. R.; van der Made, R. H.; Pringle, P. G.
WO 03/040065, 2003.
(13) Tschan, M. J.-L.; Garcia-Suarez, E. J.; Freixa, Z.; Launay, H.;
ꢁ
Hagen, H.; Benet-Buchholz, J.; van Leeuwen, P. W. N. M. J. Am. Chem.
Soc. 2010, 132, 6463–6473.
(14) (a) Jacobsen, G. B.; Pelt, H. L.; Schaart, B. J. WO 91/09822 (to
Dow), 1991; Chem. Abstr. 1991, 115, 558514. (b) Briggs, J.; Patton, J.;
Vermaire-Louw, S.; Margl, P.; Hagen, H.; Beigzadeh, D. WO 2010/
019360 (to Dow Global Technologies Inc., USA), 2010; Chem. Abstr.
2010, 152, 212563. (c) Palkovits, R.; Nieddu, I.; Kruithof, C. A.; Klein
Gebbink, R. J. M.; Weckhuysen, B. M. Chem. Eur. J. 2008, 14, 8995–
9005. (d) Hausoul, P. J. C.; Bruijincx, P. C. A.; Klein Gebbink, R. J. M.;
Weckhuysen, B. M. ChemSusChem 2009, 2, 855–858. (e) Palkovits, R.;
Parvulescu, A. N.; Hausoul, P. J. C.; Kruithof, C. A.; Klein Gebbink, R. J. M.;
Weckhuysen, B. M. Green Chem. 2009, 11, 1155–1160. (f) Parvulescu,
A. N.; Husou, P. J. C.; Bruijnincx, P. C. A..; Klein Gebbink, R. J. M. Catal.
Today 2010, 1-2, 130–138. (g) Hausoul, P. C. J.; Parvulescu, A. N.; Lutz,
M.; Spek, A. L.; Bruijnincx, P. C. A.; Weckhuysen, B. M.; Klein Gebbink,
R. J. M. Angew. Chem., Int. Ed. 2010, 49, 7972–7975.
€
(g) Vollm€uller, F.; Magerlein, W.; Klein, S.; Krause, J.; Beller, M. Adv. Synth.
€
Catal. 2001, 343, 29–33. (h) Vollm€uller, F.; Krause, J.; Klein, S.; Magerlein,
W.; Beller, M. Eur. J. Inorg. Chem. 2000, 1825–1832.
(8) Note that Dow production conditions are different from those
used in Beller’s work; crude C4 (containing only 50 wt % of 1,3-
butadiene, impurities, ...) instead of pure 1,3-butadiene, lower reagents
and promoter (NaOMe) concentration, and lower methanol quality.
(9) Drent, E. EP 542366, 1993.
(10) Tafesh, A.; Beller, M.; Krause, J. WO 98/08794, 1998.
(11) (a) Benvenuti, F.; Carlini, C.; Lami, M.; Marchionna, M.;
Patrini, R.; Raspolli Galletti, A. M.; Sbrana, G J. Mol. Catal. A: Chem.
1999, 144, 27–40. (b) Mesnager, J.; Kuntz, E.; Pinel, C. J. Organomet.
Chem. 2009, 694, 2513.
(15) van Haaren, R. J.; Keeven, P. H.; van der Veen, L. A.; Goubitz,
K.; van Strijdonck, G. P. F.; Oevering, H.; Reek, J. N. H.; Kamer,
P. C. J.; van Leeuwen, P. W. N. M. Inorg. Chim. Acta 2002, 327, 108–115.
(16) Freixa, Z.; Kamer, P. C. J.; Lutz, M.; Spek, A. L.; van Leeuwen,
P. W. N. M. Angew. Chem., Int. Ed. 2005, 44, 4385–4388.