Journal of the American Chemical Society
ARTICLE
(2) For select examples see: (a) List, B. Acc. Chem. Res. 2004, 37,
548–557. (b) Notz, W.; Tanaka, F.; Barbas, C. F. Acc. Chem. Res. 2004,
37, 580–591. (c) Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128,
6804–6805. (d) MacMillan, D. W. C. Nature 2008, 455, 304–308.
(e) Yang, J.; Chandler, C.; Stadler, M.; Kampen, D.; List, B. Nature 2008,
452, 453–455. For intramolecular Michael reactions see: (f) Kozikowski,
A. P.; Mugrage, B. B. J. Org. Chem. 1989, 54, 2275–2277.
(3) For reviews see: (a) Enders, D.; Balensiefer, T. Acc. Chem. Res.
2004, 37, 534–541. (b) Marion, N.; Diez-Gonzalez, S.; Nolan, S. P.
Angew. Chem., Int. Ed. 2007, 46, 2988–3000. For select examples see:
(c) Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905–908. (d) Maki, B. E.;
Chan, A.; Phillips, E. M.; Scheidt, K. A. Org. Lett. 2007, 9, 371–374.
(e) Wadamoto, M.; Phillips, E. M.; Reynolds, T. E.; Scheidt, K. A. J. Am.
Chem. Soc. 2007, 129, 10098–10099. (f) Phillips, E. M.; Wadamoto, M.;
Roth, H. S.; Ott, A. W.; Scheidt, K. A. Org. Lett. 2009, 11, 105–108.
(g) Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc. 2005, 127, 16406–
16407. (h) He, M.; Uc, G. J.; Bode, J. W. J. Am. Chem. Soc. 2006, 128,
15088–15089. (i) Zhang, Y. R.; He, L.; Wu, X.; Shao, P. L.; Ye, S. Org.
Lett. 2008, 10, 277–280.
(4) For reviews see: (a) Marcelli, T.; Hiemstra, H. Synthesis 2010,
1229–1279. (b) Ooi, T.; Maruoka, K. Angew. Chem., Int. Ed. 2007, 46,
4222–4266. For select intermolecular asymmetric Michael reactions
under phase-transfer catalysis see: (c) Conn, R. S. E.; Lovell, A. V.;
Karady, S.; Weinstock, L. M. J. Org. Chem. 1986, 51, 4710–4711.
(d) Corey, E. J.; Zang, F.-Y. Org. Lett. 2000, 2, 4257–4259.
(5) For general reviews on organocatalysis see: (a) Dondoni, A.;
Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638–4660. (b) Dalko, P. I.;
Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138–5175. (c) Dalko, P. I.;
Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726–3748.
(18) (a) Cortez, G. S.; Tennyson, R. L.; Romo, D. J. Am. Chem. Soc.
2001, 123, 7945–7946. (b) Cortez, G. S.; Oh, S. H.; Romo, D. Synthesis
2001, 1731–1736. (c) Oh, S. H.; Cortez, G. S.; Romo, D. J. Org. Chem.
2005, 70, 2835–2838. (d) Henry-Riyad, H.; Lee., C.; Purohit, V. C.;
Romo, D. Org. Lett. 2006, 8, 4363–4366. (e) Ma, G.; Nguyen, H.; Romo,
D. Org. Lett. 2007, 9, 2143–2146. (f) Nguyen, H.; Ma, G.; Romo, D.
Chem. Commun 2010, 46, 4803–4805. (g) Morris, K. A.; Arendt, K. M.;
Oh, S. H.; Romo, D. Org. Lett. 2010, 12, 3764–3767. (h) Nguyen, H.;
Ma, G.; Gladysheva, T.; Fremgen, T.; Romo, D. J. Org. Chem. 2011, 76,
2–12.
(19) Purohit, V. C.; Matla, A. S.; Romo, D. J. Am. Chem. Soc. 2008,
130, 10478–10479.
(20) Leverett, C. A.; Purohit, V. C.; Romo, D. Angew. Chem., Int. Ed.
2010, 49, 9479–9483.
(21) For select examples see: (a) Thomson, J. E.; Rix, K.; Smith,
A. D. Org. Lett. 2006, 8, 3785–3788. (b) Duguet, N.; Campbell, C. D.;
Slawin, A. M. Z.; Smith, A. D. Org. Biomol. Chem. 2008, 6, 1108–1113.
(c) Concellꢀon, C.; Duguet, N.; Smith, A. D. Adv. Synth. Catal. 2009, 351,
3001–3009. (d) Joannesse, C.; Johnston, C. P.; Concelloꢀn, C.; Simal, C.;
Philp, D.; Smith, A. D. Angew. Chem., Int. Ed. 2009, 48, 8914–8918.
(e) Woods, P. A.; Morrill, L. C.; Bragg, R. A.; Slawin, A. M. Z.; Smith,
A. D. Org. Lett. 2010, 12, 2660–2663. (f) Belmessieri, D.; Joannesse, C.;
Woods, P. A.; MacGregor, C.; Jones, C.; Campbell, C. D.; Johnston,
C. P.; Duguet, N.; Concellꢀon, C.; Bragg, R. A.; Smith, A. D. Org. Biomol.
Chem. 2011, 9, 559–570.
(22) For select organocatalytic asymmetric intramolecular Michael-
addition processes of aldehydes see: (a) Hechavarria Fonseca, M. T.;
List, B. Angew. Chem., Int. Ed. 2004, 43, 3958–3960. (b) Hayashi, Y.;
Gotoh, H.; Tamura, T.; Yamaguchi, H.; Masui, R.; Shoji, M. J. Am. Chem.
Soc. 2005, 127, 16028–16029. (c) Vo, N. T.; Pace, R. D. M.; O’Hara,
F.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 404–405. For an anti-
body-catalysed intramolecular process see: (d) Weinstain, R.; Lerner,
R. A.; Barbas, C. F.; Shabat, D. J. Am. Chem. Soc. 2005, 127, 13104–
13105.
(23) Chiral isothioureas and amidines have been extensively used for
asymmetric O-acylation procedures; for seminal work see: (a) Birman,
V. B.; Uffman, E. W.; Jiang, H.; Li, X.; Kilbane, C. J. J. Am. Chem. Soc.
2004, 126, 12226–12227. For select other examples see: (b) Birman,
V. B.; Li, X. Org. Lett. 2006, 8, 1351–1354. (c) Birman, V. B.; Jiang, H.;
Li, X. Org. Lett. 2007, 9, 3237–3230. (d) Birman, V. B.; Li, X. Org. Lett.
2008, 10, 1115–1118. (e) Yang, X.; Birman, V. B. Adv. Synth. Catal.
2009, 351, 2301–2304. (f) Yang, X.; Lu, G.; Birman, V. B. Org. Lett.
2010, 12, 892–895. (g) Shiina, I.; Nakata, K.; Ono, K.; Onda, Y.-S.;
Itagaki, M. J. Am. Chem. Soc. 2010, 132, 11629–11641.
(6) For a comprehensive review of Lewis base catalysis see: Denmark,
S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560–1638.
(7) For an excellent review of ammonium enolate chemistry see:
Gaunt, M. J.; Johansson, C. C. C. Chem. Rev. 2007, 107, 5596–5605.
(8) For a review of the chemistry and reactivity of enolates derived
from ketenes see: (a) Paull, D. H.; Weatherwax, A.; Lectka, T. Tetra-
hedron 2009, 65, 6771–6803. For select recent examples see: (b) Berlin,
J. M.; Fu, G. C. Angew. Chem., Int. Ed. 2008, 47, 7048–7050.
(c) Dochnahl, M.; Fu, G. C. Angew. Chem., Int. Ed. 2009, 48, 2391–
2393. (d) Paull, D. H.; Scerba, M. T.; Alden-Danforth, E.; Widger, L. R.;
Lectka, T. J. Am. Chem. Soc. 2008, 123, 17260–17261.
(9) Bekele, T.; Shah, M. H.; Wolfer, J.; Abraham, C. J.; Weatherwax,
A.; Lectka, T. J. Am. Chem. Soc. 2006, 128, 1810–1811.
(10) Abraham, C. J.; Paull, D. H.; Scerba, M. T.; Grebinski, J. W.;
Lectka, T. J. Am. Chem. Soc. 2006, 128, 13370–13371.
(11) (a) Wolfer, J.; Bekele, T.; Abraham, C. J.; Dogo-Isonagie, C.;
Lectka, T. Angew. Chem., Int. Ed. 2006, 45, 7398–7400. (b) Paull, D. H.;
Alden-Danforth, E.; Wolfer, J.; Dogo-Isonagie, C.; Abraham, C. J.;
Lectka, T. J. Org. Chem. 2007, 72, 5380–5382.
(12) Xu, X.; Wang, K.; Nelson, S. G. J. Am. Chem. Soc. 2007, 129,
11690–11691.
(13) For an alternative [4 þ 2] strategy, utilizing the reaction of vinyl
ketenes with aldehydes see: (a) Tiseni, P. S.; Peters, R. Angew. Chem., Int.
Ed. 2007, 46, 5325–5328. (b) Tiseni, P. S.; Peters, R. Org. Lett. 2008, 10,
2019–2022.
(14) (a) He, M.; Uc, G. J.; Bode, J. W. J. Am. Chem. Soc. 2006, 128,
15088–15089. (b) He, M.; Beahm, B. J.; Bode, J. W. Org. Lett. 2008, 10,
3817–3820. (c) Kaeobamrung, J.; Kozlowski, M. C.; Bode, J. W. Proc.
Natl. Acad. Sci. U.S.A. 2010, 107, 20661–20665. For the [4 þ 2] process
of azolium enolates with azadienes see: (d) He, M.; Struble, J. R.; Bode,
J. W. J. Am. Chem. Soc. 2006, 128, 8418–8420.
(24) Related intramolecular Michael addition-lactonization pro-
cesses using NHCs to generate enolates from enals have been reported:
(a) Phillips, E. M.; Wadamoto, M.; Chan, A.; Scheidt, K. A. Angew.
Chem., Int. Ed. 2007, 46, 3107–3110. (b) Li, Y.; Wang, X.-Q.; Zheng, C;
You, S.-L. Chem. Commun. 2009, 5823–5825.
(25) The absolute configuration of 2 was assigned by comparison of
the HPLC and specific rotation data with that contained in ref 24a. Ring
opening of 2 with MeOH to give 14, and comparison of its specific
rotation contained in ref 24b, also confirmed the absolute configuration
and stereochemical integrity of the products of this transformation (see
SI for full details).
(26) See SI for full experimental details.
(27) The relative and absolute configuration of 21 was confirmed by
X-ray crystal structure analysis, with all other dihydrobenzofuran
derivatives assigned by analogy. See SI for further details. Crystal-
lographic data for 21 have been deposited with the Cambridge Crystal-
lographic Data Centre as supplementary publication number CCDC
799331.
(15) Zhang, Y.-R.; Lv, H.; Zhou, D.; Ye, S. Chem. Eur. J. 2008, 14,
8473–8476.
(16) For the asymmetric Michael lactonization of silyl ketene
acetals and enones utilizing chiral ammonium phenoxides see: Tozawa,
T.; Nagao, H.; Yamane, Y.; Mukaiyama, T. Chem. Asian J. 2007, 2, 123–
134.
(28) ThelactoneproductsarisingfromMichaeladdition-lactonization
in this series proved susceptible to degradation upon attempted isolation
by chromatography, so direct ring opening with MeOH or i-PrNH2 was
followed.
(17) Juhl, K.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2003, 42, 1498–
(29) Preliminary unoptimized experiments show only modest con-
1501.
version (around 30%) using hydrocinnamic acid as the acid component.
2719
dx.doi.org/10.1021/ja109975c |J. Am. Chem. Soc. 2011, 133, 2714–2720