T. Rosu et al. / Polyhedron 30 (2011) 154–162
161
Table 5
Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44)
1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
Antibacterial activities of ligand HL and its Cu(II) complexes 1–6 as MIC values
(l
g/mL).
Compound
Gram-positive bacteriaa Gram-negative bacteriab
References
Kp
Sa. Oxf
Pa
Ec
HL
128
16
256
8
128
4
64
128
16
512
512
1024
1024
512
4
256
128
256
16
256
256
128
512
1024
1024
1024
1024
16
512
16
256
64
512
512
16
1024
1024
512
1024
512
8
[1] (a) V.I. Sokol, M.A. Ryabov, N.Yu. Merkur’eva, V.V. Davydov, Yu.V. Shklyaev,
V.S. Sergienko, B.E. Zaitsev, Kristallografiya 41 (1996) 483;
(b) K.Z. Ismail, A. El-Dissouky, A.Z. Shehadab, Polyhedron 16 (17) (1997) 2909;
(c) N. Raman, A. Kulandaisamy, A. Shunmugasundaram, K. Jeyasubramanian,
Transition Met. Chem. 26 (2001) 131.
[2] H. Liang, Q. Yu, R.-X. Hu, Z.-Y. Zhou, X.-G. Zhou, Transition Met. Chem. 27
(2002) 454.
[3] (a) A.D. Garnovskii, B.I. Kharisov, E.L. Anpilova, A.V. Bicherov, O.Yu. Korshunov,
A.S. Burlov, M.A. Mendez-Rojas, L.M. Blanco, G.S. Borodkin, I.E. Uflyand, U.O.
Mendez, Polyhedron 23 (2004) 1909;;
[Cu(L)Cl(H2O)] (1)
[Cu(L)(NO3)(H2O)2] (2) 128
[Cu(L)2] (3)
8
64
256
8
512
1024
512
512
512
8
[CuL(SCN)(H2O)2] (4)
[CuL(ClO4)(H2O)2] (5)
[Cu2(L)2(H2O)4]SO4 (6)
CuCl2ꢀ2H2O
Cu(NO3)2ꢀ3H2O
Cu(OAc)2ꢀH2O
(b) R.N. Jadeja, J.R. Shah, E. Suresh, P. Paul, Polyhedron 23 (2004) 2465;
(c) R.M. Issa, A.M. Khedr, H.F. Rizk, Spectrochim. Acta A 62 (2005) 621;
(d) J.-S. Wu, P.-F. Wang, X.-H. Zhang, S.-K. Wu, Spectrochim. Acta A 65 (2006)
749.
Cu(ClO4)2ꢀ6H2O
CuSO4ꢀ5H2O
Streptomicina
[4] P. Mosae Selvakumar, E. Suresh, P.S. Subramanian, Polyhedron 26 (2007) 749.
[5] T. Hitoshi, N. Tamao, A. Hideyuki, F. Manabu, M. Takayuki, Polyhedron 16
(1997) 3787.
[6] T. Punniyamurthy, S.J.S. Kalra, J. Iqbal, Tetrahedron Lett. 36 (1995) 8497.
[7] G.S. Trivedi, N.C. Desai, Indian J. Chem. B31 (1992) 366.
[8] Y.K. Choi, K.H. Chjo, S.M. Park, N. Doddapaneni, J. Electrochem. Soc. 142 (1995)
4107.
[9] B. Katia, L. Simon, R. Anne, C. Gerard, D. Francoise, M. Bernard, Inorg. Chem. 35
(1996) 387.
[10] (a) T. Rosu, S. Pasculescu, V. Lazar, C. Chifiriuc, R. Cernat, Molecules 11 (2006)
904;
a
Kp (Klebsiella pneumoniae ATCC 31488); Sa (Staphylococus aureus var. Oxford
ATCC 6538).
b
Pa (Pseudomonas aeruginosa ATCC 9027); Ec (Escherichia coli ATCC 10536).
The synthesized Schiff base has an inhibitory effect (MIC values
in range 128–512 g/mL) on the growth of the tested strains. All
the complexes show greater bactericidal activities against E. coli
(MIC 16–512
(MIC 16–256
l
l
g/mL), S. aureus (MIC 4–128
lg/mL), P. aeruginosa
(b) T. Rosu, A. Gulea, A. Nicolae, R. Georgescu, Molecules 12 (2007) 782;
(c) T. Rosu, M. Negoiu, S. Pasculescu, E. Pahontu, D. Poirier, A. Gulea, Eur. J.
Med. Chem. 45 (2010) 774;
(d) T. Rosu, E. Pahontu, C. Maxim, R. Georgescu, N. Stanica, G.L. Almajan, A.
Gulea, Polyhedron 29 (2010) 757.
lg/mL) and K. pneumoniae (MIC 8–256
lg/mL) as
compared to their corresponding ligand (with the exception for 2
and 5, which exert a visible decrease of the action).
The high bactericidal activity of complex 1 against S. aureus is
probably predetermined by its tetrahedral geometry in DMSO
solution. Complex 3 was found to have better activity against all
the bacterial species, probably due the axial symmetry (square pla-
nar) in DMSO solution. In case of 6, the presence of the SO42ꢁ moi-
ety induced a visible increase of action against all the bacterial
species taken in the study.
[11] A. Barry, Procedures and theoretical considerations for testing antimicrobial
agents in agar media, in: Lorian (Ed.), Antibiotics in Laboratory Medicine, fifth
ed., Williams and Wilkins, Baltimore, 1991.
[12] National Committee for Clinical Laboratory Standard, NCCLS: Methods for
Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated
or Fastidious Bacteria; Approved Guideline, Document M45-A, vol. 26(19),
Willanova, PA, USA, 1999.
[13] D.D. Perrin, W.L. Armarego, D.R. Perrin, Purification of Laboratory Chemicals,
second ed., Pergamon, New York, 1990.
[14] (a) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, fifth ed., Wiley Interscience, New York, 1997;
(b) K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds,
Wiley and Sons, New York, 1986;
4. Conclusions
(c) T. Glaser, M. Heidemeier, T. Lügger, J. Chem. Soc., Dalton Trans. (2003)
2381.
[15] X.-Q. Shen, R. Yang, H.-C. Yao, H.-Y. Zhang, G. Li, H.-Q. Zhang, P.-K. Chen, H.-W.
Hou, J. Coord. Chem. 59 (2006) 2031.
[16] (a) Stoe & Cie, x-area (Version 1.18), Stoe & Cie, Darmstadt, Germany, 2002.;
(b) G.M. Sheldrick, SHELXS-97, A Program for the Solution of Crystal Structures,
University of Göttingen, Germany, 1997.;
(c) G.M. Sheldrick, SHELXL-97, A Program for Crystal Structures Refinement
University of Göttingen, Germany, 1997.
[17] (a) A. Barry, Procedures and Theoretical Considerations for Testing
Physico-chemical analyses confirmed the composition and
structures of the newly obtained complex combinations. Depend-
ing on the metal salt anion used, the ligand acts as mononegative
bidentate (when reacted with Cu2(OAc)4ꢀ(H2O)2) or mononegative
tridentate (when reacted with CuCl2ꢀ2H2O, Cu(NO3)2ꢀ3H2O, Cu-
SO4ꢀ5H2O and Cu(ClO4)2ꢀ6H2O). The single crystal X-ray structure
of 3, being the first in the series of this type of compound, illus-
trates that the steric effect can have a profound influence on the
Cu(II) geometry, rearranging into a distorted tetrahedral geometry.
The anti-microbial activity was dependent on the microbial species
tested and the metal salt anion used.
Antimicrobial Agents in Agar Media, in:
Lorian (Ed.), Antibiotics in
Laboratory Medicine, fifth ed., Williams and Wilkins, Baltimore, 1991;
(b) Methods for Anti-microbial Dilution and Disk Susceptibility Testing of
Infrequently Isolated or Fastidious Bacteria; Approved Guideline Document
M45-A 26(19). National Committee for Clinical Laboratory Standard, NCCLS,
Villanova, PA ,USA, 1999.
[18] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
[19] V.M. Leovac, V.S. Jevtovic, L.S. Jovanovic, G.A. Bogdanovic, J. Serb. Chem. Soc. 70
(2005) 393.
Acknowledgements
[20] A. El-Dissouky, A.K. Shehata, G. El-Mahdey, Polyhedron 16 (1992) 1247.
[21] R.N. Patel, V.L.N. Gundla, D.K. Patel, Polyhedron 27 (2008) 1054.
[22] R. Kannappan, S. Tanase, I. Mutikainen, U. Turpeinen, J. Reedijk, Polyhedron 25
(2006) 1646.
[23] (a) A.L. Doadrio Villarejo, G. Pérez, C.V. Ragel, Eclética Química 18 (1993) 41;
(b) J. Martínez, R. Lozano, J. Román, A. Doadrio, J.L. Peña, Polyhedron 5 (1986)
1341;
The authors thank the Organic Chemistry Department, ICECHIM
Bucharest (Romania) for microanalysis, Institute Pasteur, Bucha-
rest (Romania) for antimicrobial activity assays. Supported by Na-
tional Authority for Scientific Research of Ministry of Education
and Research, Bucharest, Romania (PN II, Grant No. 42-128/2008).
(c) A.A. Khandar, S.A. Hosseini-Yazdi, M. Khatamian, P. McArdle, S.A. Zarei,
Polyhedron 26 (2007) 33.
[24] (a) P.F. Raphael, E. Manoj, M.R. Prathapachandra Kurup, Polyhedron 26 (2007)
818;
Appendix A. Supplementary data
(b) A.A. Khandar, S.A. Hosseini-Yazdi, Polyhedron 22 (2003) 1481;
(c) M. Vicente, R. Bastida, C. Lodeiro, A. Macias, A.J. Parola, L. Valencia, S.E.
Spey, Inorg. Chem. 42 (2003) 6768;
(d) C. Lodeiro, R. Bastida, E. Bertolo, A. Macias, A. Rodríguez, Polyhedron 22
(2003) 1701.
CCDC 742652 and 742653 contains the supplementary crystal-
lographic data for C19H19N3O3 (HL) and C38H36CuN6O6 (3). These
[25] A. El-Dissouky, A.K. Shehata, G. El-Mahadey, Polyhedron 16 (1997) 1247.