434
T. Shibue et al. / Bioorg. Med. Chem. Lett. 21 (2011) 431–434
logs. It should be noted that changing one of the stereochemistries
at the C-11 and C-13 positions in 1b does not influence inhibition
activity of tubulin polymerization. However, inversion of both
configurations at the C-11 and C-13 positions in 1b resulted in a
decrease in the inhibitory activity.
References and notes
1. Zhou, J.; Giannakakou, P. Curr. Med. Chem.-Anticancer Agents 2005, 5, 65.
2. Jordan, M. A.; Wilson, L. Nat. Rev. Cancer 2004, 4, 253.
3. Schiff, P. B.; Fant, J.; Horwitz, S. B. Nature 1979, 277, 665.
4. Höfle, G.; Bedorf, N.; Steinmetz, H.; Schomburg, D.; Gerth, K.; Reichenbach, H.
Angew. Chem., Int. Ed. 1996, 35, 1567.
The antiproliferative activities of 6 were dramatically decreased
compared with 1b in a tested human cancer cell line. Compound 7,
which was a stereoisomer at the C-13 position in 1b, also showed a
pronounced decline in antiproliferative activities. When compared
to 7, compound 6 showed similar activity in MCF7 cells, whereas it
exhibited potent activities in other cells. Compound 8, bearing an
inverted configuration at the two stereocenters in 1b, exhibited
much less activity than the other compounds in this assay. Our re-
sults indicate that the two stereochemistries of Tuv in tubulysin D
(1b) play a major role in the potent antiproliferative activities. The
inverted configuration at either the C-11 or C-13 position impairs
the antiproliferative activities. Interestingly, these results regard-
ing the antiproliferative activity do not correlate well with the
inhibition of tubulin polymerization. In particular, the epi-tubuly-
sin Ds (6 and 7) were found to possess tubulin polymerization
inhibitory activity similar to that of tubulysin D (1b), whereas
the di-epi-tubulysin D (8) exhibited much less activity than 1b.
One possibility is that an inverted configuration at either the C-
11 or C-13 position in 1b might induce the change in the cell mem-
brane permeability.19
In summary, we have succeeded in carrying out stereoselective
synthesis of all possible stereoisomers of Tuv in tubulysin D (1b),
and have clarified the relationship between two stereochemistries
of Tuv in 1b as well as the biological properties. It has been dem-
onstrated that an inverted configuration at either the C-11 or C-
13 position in 1b does not have a practical impact on the inhibition
of tubulin polymerization but dose play a role in the potent anti-
proliferative activities. Further investigation related to biological
studies of these and other tubulysin analogs is currently under
way and will be reported in due course.
5. Gunasekera, S.; Gunasekera, M.; Longley, R. E. J. Org. Chem. 1990, 55, 4912.
6. Lobert, S. P.; Vulevic, B.; Correia, J. J. Biochemistry 1996, 35, 6806.
7. Sasse, F.; Steinmetz, H.; Heil, J.; Höfle, G.; Reichenbach, H. J. Antibiot. 2000, 53,
879.
8. Steinmetz, H.; Glaser, N.; Herdtweck, E.; Sasse, F.; Reichenbach, H.; Höfle, G.
Angew. Chem., Int. Ed. 2004, 43, 4888.
´
9. Kaur, G.; Hollingshead, M.; Holbeck, S.; Schauer-Vukašinovic, V.; Camalier, R.
F.; Dömling, A.; Agarwal, S. Biochem. J. 2006, 396, 235.
10. Khalil, M. W.; Sasse, F.; Lünsdorf, H.; Elnakady, Y. A.; Reichenbach, H. Chem.
Biol. Chem. 2006, 7, 678.
11. Höfle, G.; Glaser, N.; Leibold, T.; Karama, U.; Sasse, F.; Steinmetz, H. Pure Appl.
Chem. 2003, 75, 167.
12. Neri, D.; Fossati, G.; Zanda, M. ChemMedChem 2006, 1, 175.
13. Dömling, A.; Beck, B.; Eichelberger, U.; Sakamuri, S.; Menon, S.; Chen, Q.-Z.; Lu,
Y.; Wessjohann, L. A. Angew. Chem., Int. Ed. 2006, 45, 7235. and Angew. Chem.,
Int. Ed. 2007, 46, 2347 (Corrigendum).
14. Peltier, H. M.; McMahon, J. P.; Patterson, A. W.; Ellman, J. A. J. Am. Chem. Soc.
2006, 128, 16018.
15. Sani, M.; Fossati, G.; Huguenot, F.; Zanda, M. Angew. Chem., Int. Ed. 2007, 46,
3526.
16. Wipf, P.; Wang, Z. Org. Lett. 2007, 9, 1605.
17. Wang, Z.; McPherson, P. A.; Raccor, B. S.; Balachandran, R.; Zhu, G.; Day, B. W.;
Vogt, A.; Wipf, P. Chem. Biol. Drug Des. 2007, 70, 75.
18. Patterson, A. W.; Peltier, H. M.; Sasse, F.; Ellman, J. A. Chem. Eur. J. 2007, 13,
9534.
19. Raghavan, B.; Balasubramanian, R.; Steele, J. C.; Sackett, D. L.; Fecik, R. A. J. Med.
Chem. 2008, 51, 1530.
20. Balasubramanian, R.; Raghavan, B.; Steele, J. C.; Sackett, D. L.; Fecik, R. A. Bioorg.
Med. Chem. Lett. 2008, 18, 2996.
21. Balasubramanian, R.; Raghavan, B.; Begaye, A.; Sackett, D. L.; Fecik, R. A. J. Med.
Chem. 2009, 52, 238.
22. Patterson, A. W.; Peltier, H. M.; Ellman, J. A. J. Org. Chem. 2008, 73, 4362.
23. Ullrich, A.; Chai, Y.; Pistorius, D.; Elnakady, Y. A.; Herrmann, J. E.; Weissman, K.
J.; Kazmaier, U.; Müller, R. Angew. Chem., Int. Ed. 2009, 48, 4422.
24. Shibue, T.; Hirai, T.; Okamoto, I.; Morita, N.; Masu, H.; Azumaya, I.; Tamura, O.
Chem. Eur. J. 2010, 16, 11678. In this report, the antiproliferative activities of 1b
in HEp-2 cells have been shown to be more potent than those of vinblastine. In
contrast, ent-1b has exhibited much weaker activities [IC50
: 0.21 ng/mL
(0.25 nM) for 1b, 520 ng/mL (630 nM) for ent-1b and 7.0 ng/mL (8.6 nM) for
vinblastine]. The activity of 1c, which lacks the N,O-acetal side chain at the N-
14 position in 1b, exceeds that of vinblastine, but is slightly less active than 1b.
Acknowledgment
Meanwhile, tubulysin
V (1d), which is a deacetylated form of 1c, is
approximately 100-fold less active than 1c and vinblastine [IC50: 1.4 ng/mL
(2.0 nM) for 1c and 730 ng/mL (1090 nM) for 1d].
25. Mitsunobu, O. Synthesis 1981, 1.
We are grateful to Dr. Y. Fukuda of Kyorin Pharmaceutical Co.
Ltd for his valuable suggestions for and discussions of this study.
26. Martin, S. F.; Dodge, J. A. Tetrahedron Lett. 1991, 32, 3017.
27. Gómez-Vidal, J. A.; Forrester, M. T.; Silverman, R. B. Org. Lett. 2001, 3, 2477.
Supplementary data
Supplementary data associated with this article can be found, in