Journal of the American Chemical Society
Communication
(7) (a) Rueda-Becerril, M.; Sazepin, C. C.; Leung, J. C. T.;
Okbinoglu, T.; Kennepohl, P.; Paquin, J.-F.; Sammis, G. M. J. Am.
Chem. Soc. 2012, 134, 4026. (b) Leung, J. C. T.; Chatalova-Sazepin,
C.; West, J. G.; Rueda-Becerril, M.; Paquin, J.-F.; Sammis, G. M.
Angew. Chem., Int. Ed. 2012, 51, 10804.
(8) Bloom, S.; Pitts, C. R.; Miller, D. C.; Haselton, N.; Holl, M. G.;
Urheim, E.; Lectka, T. Angew. Chem., Int. Ed. 2012, 51, 10580.
(9) Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard, W. A.,
III; Groves, J. T. Science 2012, 337, 1322.
(22) For selected reviews, see: (a) Robin, S.; Rousseau, G.
Tetrahedron 1998, 54, 13681. (b) Robin, S.; Rousseau, G. Eur. J.
Org. Chem. 2002, 2002, 3099.
(23) Amidyl radicals are typically generated via the homocleavage of
weak N−heteroatom (S, O, N, halogen, etc.) bonds. For representative
examples, see: (a) Lyaskovskyy, V.; Suarez, A. I. O.; Lu, H.; Jiang, H.;
Zhang, X. P.; de Bruin, B. J. Am. Chem. Soc. 2011, 133, 12264.
(b) Guin, J.; Frohlich, R.; Studer, A. Angew. Chem., Int. Ed. 2008, 47,
̈
779. (c) Guin, J.; Muck-Lichtenfeld, C.; Grimme, S.; Studer, A. J. Am.
̈
Chem. Soc. 2007, 129, 4498. (d) Kemper, J.; Studer, A. Angew. Chem.,
Int. Ed. 2005, 44, 4914. (e) Klugge, J.; Herdtweck, E.; Bach, T. Synlett
2004, 15, 1199. (f) Moutrille, C.; Zard, S. Z. Chem. Commun. 2004, 40,
1848. (g) Gagosz, F.; Moutrille, C.; Zard, S. Z. Org. Lett. 2002, 4, 2707.
(h) Cassayre, J.; Gagosz, F.; Zard, S. Z. Angew. Chem., Int. Ed. 2002,
41, 1873. (i) Artman, G. D., III; Waldman, J. H.; Weinreb, S. M. Synlett
2002, 13, 2057. (j) Esker, J. K.; Newcomb, M. Tetrahedron Lett. 1993,
34, 6877. (k) Concepcion, J. I.; Francisco, C. G.; Hernandez, R.;
Salazar, J. A.; Suarez, E. Tetrahedron Lett. 1984, 25, 1953. (l) Barton,
D. H. R.; Beckwith, A. L. J.; Goosen, A. J. Chem. Soc. 1965, 181.
(10) Yin, F.; Wang, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134,
10401.
(11) Barker, T. J.; Boger, D. L. J. Am. Chem. Soc. 2012, 134, 13588.
(12) (a) Singh, R. P.; Shreeve, J. M. Acc. Chem. Res. 2004, 37, 31.
(b) Nyffeler, P. T.; Duron, S. G.; Burkart, M. D.; Vincent, S. P.; Wong,
́
C.-H. Angew. Chem., Int. Ed. 2005, 44, 192.
(13) For nonradical aminofluorination of alkenes, see: (a) Wu, T.;
Yin, G.; Liu, G. J. Am. Chem. Soc. 2009, 131, 16354. (b) Qiu, S.; Xu, T.;
Zhou, J.; Guo, Y.; Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
(c) Lozano, O.; Blessley, G.; del Campo, T. M.; Thompson, A. L.;
Giuffredi, G. T.; Bettati, M.; Walker, M.; Borman, R.; Gouverneur, V.
Angew. Chem., Int. Ed. 2011, 50, 8105. (d) Wang, Q.; Zhong, W.; Wei,
X.; Ning, M.; Meng, X.; Li, Z. Org. Biomol. Chem. 2012, 10, 8566.
(e) Kong, W.; Feige, P.; de Haro, T.; Nevado, C. Angew. Chem., Int. Ed.
2013, 52, 2469. (f) Yadav, J. S.; Reddy, B. V. S.; Chary, D. N.;
Chandrakanth, D. Tetrahedron Lett. 2009, 50, 1136. (g) Appayee, C.;
Brenner-Moyer, S. E. Org. Lett. 2010, 12, 3356.
(14) For nonradical aminofluorination of activated allenes and
alkynes, see: (a) Mu, X.; Wu, T.; Peng, H.; Liu, G. Angew. Chem., Int.
Ed. 2011, 50, 8176. (b) Xu, T.; Liu, G. Org. Lett. 2012, 14, 5416.
(15) For reviews on amidyl radicals, see: (a) Stella, L. Angew. Chem.,
Int. Ed. Engl. 1983, 22, 337. (b) Esker, J. L.; Newcomb, M. In Advances
in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: New
York, 1993; Vol. 58, pp 1−45. (c) Zard, S. Z. Synlett 1996, 7, 1148.
(d) Fallis, A. G.; Brinza, I. M. Tetrahedron 1997, 53, 17543. (e) Stella,
L. In Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-
VCH: Weinheim, Germany, 2001; Vol. 2, pp 407−424. (f) Zard, S. Z.
Chem. Soc. Rev. 2008, 37, 1603. (g) Baralle, A.; Baroudi, A.; Daniel, M.;
Fensterbank, L.; Goddard, J.-P.; Lacote, E.; Larraufie, M.-H.; Maestri,
G.; Malacria, M.; Ollivier, C. In Encyclopedia of Radicals in Chemistry,
Biology and Materials; Chatgilialoglu, C., Studer, A., Eds.; Wiley:
Chichester, U.K., 2012; pp 767−816.
(16) For the o-iodoxybenzoic acid (IBX)-mediated oxidative
generation of amidyl radicals, see: (a) Nicolaou, K. C.; Baran, P. S.;
Zhong, Y.-L.; Choi, H.-S.; Yoon, W. H.; He, Y.; Fong, K. C. Angew.
Chem., Int. Ed. 1999, 38, 1669. (b) Nicolaou, K. C.; Zhong, Y.-L.;
Baran, P. S. Angew. Chem., Int. Ed. 2000, 39, 625. (c) Nicolaou, K. C.;
Baran, P. S.; Kranich, R.; Zhong, Y.-L.; Sugita, K.; Zou, N. Angew.
Chem., Int. Ed. 2001, 40, 202. (d) Nicolaou, K. C.; Baran, P. S.; Zhong,
Y.-L.; Barluenga, S.; Hunt, K. W.; Kranich, R.; Vega, J. A. J. Am. Chem.
Soc. 2002, 124, 2233. (e) Janza, B.; Studer, A. J. Org. Chem. 2005, 70,
6991.
(17) (a) Tang, Y.; Li, C. Org. Lett. 2004, 6, 3229. (b) Lu, H.; Li, C.
Tetrahedron Lett. 2005, 46, 5983. (c) Chen, Q.; Shen, M.; Tang, Y.; Li,
C. Org. Lett. 2005, 7, 1625. (d) Hu, T.; Shen, M.; Chen, Q.; Li, C. Org.
Lett. 2006, 8, 2647. (e) Yuan, X.; Liu, K.; Li, C. J. Org. Chem. 2008, 73,
6166. (f) Zhuang, S.; Liu, K.; Li, C. J. Org. Chem. 2011, 76, 8100.
(18) (a) Wang, Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. J. Am. Chem.
Soc. 2012, 134, 4258. (b) Liu, X.; Wang, Z.; Cheng, X.; Li, C. J. Am.
Chem. Soc. 2012, 134, 14330.
(19) Kronenthal, D. R.; Han, C. Y.; Taylor, M. K. J. Org. Chem. 1982,
47, 2765.
(20) An alternative mechanism for the aminofluorination is the N-
fluorination of the unsaturated amides followed by the fluorine atom
transfer cyclization. However, the failure of primary and N-alkyl
amides in aminofluorination seems to discourage this hypothesis.
(21) Newcomb, M. In Radicals in Organic Synthesis; Renaud, P., Sibi,
M. P., Eds.; Wiley-VCH: Weinheim, Germany, 2001; Vol. 1, pp 317−
336.
4643
dx.doi.org/10.1021/ja400124t | J. Am. Chem. Soc. 2013, 135, 4640−4643