Journal of the American Chemical Society
Communication
Gahr, M. J. Am. Chem. Soc. 1989, 111, 6465. (d) Lewis, F. D.; Bassani,
D. M.; Burch, E. L.; Choen, B. E.; Engleman, J. A.; Reddy, G. D.;
Schneider, S.; Jaeger, W.; Gedeck, P.; Gahr, M. J. Am. Chem. Soc. 1995,
117, 660.
(8) (a) Cyclic voltammetry of 1 exhibited an irreversible oxidation
with a peak potential at +0.43 V vs Fc in MeCN. Details are included
in the Supporting Information. (b) Wayner, D. D. M.; Griller, D. J.
Am. Chem. Soc. 1985, 107, 7764. Because of the proximal ammonium
ion, the given benzylic radical potential likely represents a lower
bound.
In conclusion, we have developed a novel photoredox
protocol for intramolecular olefin hydroamination that operates
through sequential catalyst-mediated electron transfer steps
spanning a range of potentials of over 2.2 V. This work
represents a rare example of the use of aminium radical cations
derived from simple amine precursors in catalytic C−N bond
formation. Efforts are currently underway to apply the elements
of reaction design presented here to other catalytic olefin
amino-functionalization processes.
(9) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.;
Von Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85.
ASSOCIATED CONTENT
■
(10) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R.
A.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
(11) Reactions of 1 on a 2.5 mmol scale proceeded in 80% isolated
yield after 21 h under the standard reaction conditions.
(12) Mojelsky, T.; Chow, Y. L. J. Am. Chem. Soc. 1974, 96, 4549.
(13) Michejda, C. J.; Campbell, D. H. J. Am. Chem. Soc. 1979, 101,
7687.
(14) Consistent with this view, proton transfer from an N−H bond
in the aminium ion (pKa ≈ 17 in MeCN) or an adjacent methylene
C−H bond (pKa ≈ 18 in MeCN) to the starting material (pKa ≈ 11 in
MeCN for N-methylanilinium ion) is significantly endergonic.
(15) A negative ρ value might also result from protonation of
increasingly basic carbanion intermediates. However, cyclization rates
of 1 evaluated in either CH3OH or CD3OD resulted in a kH/kD of 1.1,
indicative that C−H bond formation is not rate-limiting.
(16) Back electron transfer from the reduced Ir(II) complex to the
aminium radical is exergonic by ∼2.3 V.
S
* Supporting Information
Experimental procedures, characterization data, and kinetic
data. This material is available free of charge via the Internet at
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by Princeton University. Istvan
Pelczer is acknowledged for NMR assistance.
(17) For reactions run in CH3OD, the deuterium-bearing stereo-
center was formed as a 1:1 mixture of diastereomers.
(18) Mizuta, S.; Verhoog, S.; Engle, K. M.; Khotavivattana, T.;
O’Duill, M.; Wheelhouse, K.; Rassias, G.; Medebielle, M.; Gouverneur,
V. J. Am. Chem. Soc. 2013, 135, 2505.
(19) Consistent with this view, hydrogen atom transfer to the
benzylic radicals from the C−H bonds in MeOH is endergonic by ∼7
kcal/mol.
REFERENCES
■
(1) (a) Neale, R. Synthesis 1971, 1. (b) Newcomb, M.; Deeb, T. M.;
Marquardt, D. J. Tetrahedron 1990, 46, 2317. (c) Horner, J. H.;
Martinez, F. N.; Musa, O. M.; Newcomb, M.; Shahin, H. E. J. Am.
Chem. Soc. 1995, 117, 11124. (d) Stella, L. Angew. Chem., Int. Ed. Engl.
1983, 22, 337. (e) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.
(2) For a comprehensive review, see: Hu, J.; Wang, J.; Nguyen, T. H.;
Zheng, N. Beilstein J. Org. Chem. 2013, 9, 1977.
(3) For selected examples, see: (a) Condie, A. G.; Gonzalez-Gomez,
J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464.
(b) Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org.
Lett. 2012, 14, 94. (c) Rueping, M.; Leonori, D.; Poisson, T. Chem.
Commun. 2011, 47, 9615. (d) McNally, A.; Prier, C. K.; MacMillan, D.
W. C. Science 2011, 334, 1114. (e) DiRocco, D. A.; Rovis, T. J. Am.
Chem. Soc. 2012, 134, 8094.
(4) Maity, S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 9562.
(5) For selected examples of catalytic hydroamination reactions, see:
(a) Utsunomiya, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 2702.
(b) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673. (c) Bender,
C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2005, 127, 1070.
(d) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc.
2006, 128, 11693. (e) LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste,
F. D. J. Am. Chem. Soc. 2007, 129, 2452. (f) Muller, T. E.; Hultzsch, K.
̈
C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.
(g) Cochran, B. M.; Michael, F. E. J. Am. Chem. Soc. 2008, 130, 2786.
(h) Crimmin, M. R.; Arrowsmith, M.; Barrett, A. G. M.; Casely, I. J.;
Hill, M. S.; Procopiou, P. A. J. Am. Chem. Soc. 2009, 131, 9670.
(i) Shen, X.; Buchwald, S. L. Angew. Chem., Int. Ed. 2010, 49, 564.
(j) Brown, A. R.; Uyeda, C.; Brotherton, C. A.; Jacobsen, E. N. J. Am.
Chem. Soc. 2013, 135, 6747. (k) Zhu, S.; Niljianskul, N.; Buchwald, S.
L. J. Am. Chem. Soc. 2013, 135, 15746. (l) Sevov, C. S.; Zhou, J. S.;
Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 3200.
(6) For selected examples of radical-based hydroamination methods,
see: (a) Guin, J.; Muck-Lichtenfeld, C.; Grimme, S.; Studer, A. J. Am.
̈
Chem. Soc. 2007, 129, 4498. (b) Guin, J.; Frohlich, R.; Studer, A.
̈
Angew. Chem., Int. Ed. 2008, 47, 779. (c) Yamashita, T.; Yasuda, M.;
Isami, T.; Tanabe, K.; Shima, K. Tetrahedron 1994, 50, 9275.
(7) (a) Nguyen, T. M.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135,
9588. (b) Nguyen, T. M.; Manohar, N.; Nicewicz, D. A. Angew. Chem.,
Int. Ed. 2014, 53, 6198. (c) Lewis, F. D.; Reddy, G. D.; Schneider, S.;
D
dx.doi.org/10.1021/ja5056774 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX